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Development of an Innovative Algorithm

for Aerodynamics-Structure Interaction

Using Lattice Boltzmann Method

EXECUTIVE SUMMARY

The lattice Boltzmann equation (LBE) is a kinetic formulation which offers an alternative

computational method capable of solving fluid dynamics for various systems. Major advantages

of the method are owing to the fact that the solution for the particle distribution functions is

explicit, easy to implement, and the algorithm is natural Io parallelize. In this final report, we

summarize the works accomplished in the past three years. Since most works have been

published, the technical details can be found in the literature. Brief summary will be provided in

this report.

In this project, a second-order accurate treatment of boundary condition in the LBE

method is developed for a curved boundary and tested successfully in various 2-D and 3-D

configurations. To evaluate the aerodynamic force on a body in the context of LBE method,

several force evaluation schemes have been investigated. A simple momentum exchange

method is shown to give reliable and accurate values for the force on a body in both 2-D and 3-D

cases. Various 3-D LBE models have been assessed in terms of efficiency, accuracy, and

robustness. In general, accurate 3-D results can be obtained using LBE methods. The 3-D 19-bit

model is found to be the best one among the 15-bit, 19-bit, and 27-bit LBE models. To achieve

desired grid resolution and to accommodate the far field boundary conditions in aerodynamics

computations, a multi-block LBE method is developed by dividing the flow field into various

blocks each having constant lattice spacing. Substantial contribution to the LBE method is also

made through the development of a new, generalized lattice Boltzmann equation constructed in

the moment space in order to improve the computational stability, detailed theoretical analysis on

the stability, dispersion, and dissipation characteristics of the LBE method, and computational

studies of high Reynolds number flows with singular gradients. Finally, a finite difference-based

lattice Boltzmann method is developed for inviscid compressible flows.
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Summary

The lattice Boltzmann equation (LBE) is an altemative kinetic method capable of solving

hydrodynamics for various systems. Major advantages of the method are owing to the fact that

the solution for the particle distribution functions is explicit, easy to implement, and natural to

parallelize. Because the method often uses uniform regular Cartesian lattices in space, curved

boundaries are often approximated by a series of stairs that leads to reduction in computational

accuracy. In this work, a second-order accurate treatment of boundary condition in the LBE

method is developed for a curved boundary. The proposed treatment of the curved boundaries is

an improvement of a scheme due to Filippova & H_inel [J. Comp. Phys. 143, 426 (1998)]. The

proposed treatment for curved boundaries is tested against several flow problems: 2-D channel

flows with constant and oscillating pressure gradients for which analytic solutions are known,

flow due to an impulsively started wail, lid-driven square cavity flow, and uniform flow over a

column of circular cylinders. The second-order accuracy is observed with solid boundary

arbitrarily placed between lattice nodes. The proposed boundary condition has well behaved

stability characteristics when the relaxation time is close to ½, the zero limit of viscosity. The

improvement can make a substantial contribution toward simulating practical fluid flow

problems using the lattice Boltzmann method.

Paper published in: J. Computational Physics, 155, 307-330, 1999.
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Summary

In this work, we investigate two issues that are important to computational efficiency and

reliability in fluid dynamic applications of the lattice Boltzmann equation (LBE): (1)

Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment

of the boundary conditions on curved solid boundaries and their 3-D implementations. Three

athermal 3-D LBE models (Q15D3, Q19D3, and Q27D3) are studied and compared in terms of

efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova

and H_inel (1998, d. Comp. Phys. 147, 219) and Meiet al. (1999, _ Comp. Phys. 155, 307) in 2-

D is extended to and implemented for 3-D. The convergence, stability, and computational

efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested

in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D

lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a

sphere. We found that while the 15-velocity 3-D (Q15D3) model is more prone to numerical

instability and the Q27D3 is more computationally intensive, the Q19D3 model provides a

balance between computational reliability and efficiency. Through numerical simulations, we

demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order

accuracy and possesses satisfactory stability characteristics.

Paper published in: J. Computational Phys., vol. 161,680-699, 2000.
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Summary

Accurate evaluation of the hydrodynamic force on a curved body is an important issue in

the method of lattice Boltzmann equation for fluid flow problems. This issue has not been

systematically studied so far. The present work investigates two approaches for force evaluation:

the method of momentum exchange and the method of stress integration. The boundary condition

for the particle distribution functions on curved geometries is handled with second order

accuracy based on our recent works [Mei et al. (1999, J. Comp. Phys. 155, 307), & Meiet al.

(2000, d. Comp. Phys. 161, 680)]. The stress integration method is tedious in 2-D flow and

difficult to implement in 3-D flow in general; in comparison, the momentum exchange method is

reliable, accurate, and easy to implement in both 2-D and 3-D flows. Several test cases are

selected to evaluate the present methods, including: 1) 2-D pressure-driven channel flow; 2) 2-D

uniform flow over a columns of circular cylinder; 3) a channel flow over an asymmetrically

placed circular cylinder with vortex shedding; 4) pressure-driven flow in a circular pipe; and 5)

3-D flow over a sphere. The drag evaluated by using the momentum exchange method in the

LBE agrees well with the exact or other published results.

Paper currently under review for publication at Physical Review E.
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A Multi-block Lattice Boltzmann Method for Fluid Flows
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Summary

Compared to the Navier-Stokes equation-based approach, the method of lattice Boltzmann

Equation (LBE) offers an alternative treatment for fluid dynamics. The LBE method often

employs uniform lattices to maintain a compact and efficient computational procedure, which

makes it less efficient to perform flow simulations when there is a need for high resolution near

the body and/or there is a far-field boundary. To resolve these difficulties, a multi-block method

is developed. In this method, the flow field is divided into blocks. In each block, the grid is

uniform with desired resolution. In this paper, an accurate interface treatment between

neighboring blocks is derived to ensure the continuity of mass, momentum, and stresses across

the interface. Several test cases are employed to demonstrate that the present multi-block method

can substantially improve the accuracy and computational efficiency.

Paper published as AIAA 2000-2614, Fluids 2000, Denver, Colorado, 6/19-22, 2000.

Paper is also currently under review for publication in Int. J. of Num. Method for Fluid Flows.
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Summary
The generalized hydrodynamics (the wave vector dependence of the transport coefficients) of a

generalized lattice Boltzmann equation (LBE) is studied in detail. The generalized lattice

Boltzmann equation is constructed in moment space rather than in discrete velocity space. The

generalized hydrodynamics of the model is obtained by solving the dispersion equation of the

linearized LBE either analytically by using perturbation technique or numerically. The proposed

LBE model has a maximum number of adjustable parameters for the given set of discrete

velocities. Generalized hydrodynamics characterizes dispersion, dissipation (hyperviscosities),

anisotropy, and lack of Galilean invariance of the model, and can be applied to select the values

of the adjustable parameters that optimize the properties of the model. The proposed generalized

hydrodynamic analysis also provides some insights into stability and proper initial conditions for

LBE simulations. The stability properties of some two-dimensional LBE models are analyzed

and compared with each other in the parameter space ot' the mean streaming velocity and the

viscous relaxation time. The procedure described in this work can be applied to analyze other

LBE models. As examples, LBE models with various interpolation schemes are analyzed.

Numerical results on shear ow with an initially discontinuous velocity pro_le (shock) with or

without a constant streaming velocity are shown to demonstrate the dispersion e_ects in the LBE

model; the results compare favorably with our theoretical analysis. We also show that whereas

linear analysis of the LBE evolution operator is equivalent to Chapman-Enskog analysis in the

long-wavelength limit (wave vector k = 0), it can also provide results for large values of k. Such

results are important for the stability and other hydrodynamic properties of the LBE method and

cannot be obtained through Chapman-Enskog analysis.

Paper published in Physical Review E. Vo. 61, No. 6, 6546-6562, June 2000.
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Summary

A finite difference-based lattice Boltzmann model, employing the 2-D, 9-speed square (D2Q9)

lattice for the compressible Euler equations, is presented. The model is constructed by allowing

the particles to possess both kinetic and thermal energies. Such a lattice structure can represent

both incompressible and compressible flow regimes. In the numerical treatment, to attain

desirable accuracy, the total-variation-diminishing (TVD) scheme is adopted with either the

minmod function or a second-order corrector as the flux limiter. The model can treat

shock/expansion waves as well as contact discontinuity. Both one- and two-dimensional test

cases are computed, and the results are compared with the exact as well as other reported

numerical solutions, demonstrating that there is consistency between macroscopic and kinetic

computations for the compressible flow.

Paper is accepted for publication in lnt. J. of Heat and Mass Transfer
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The lattice Boltzmann equation (LBE) is an alternative kinetic method capable

of solving hydrodynamics for various systems. Major advantages of the method are

due to the fact that the solution for the particle distribution functions is explicit, easy

to implement, and natural to parallelize. Because the method often uses uniform

regular Cartesian lattices in space, curved boundaries are often approximated by a

series of stairs that leads to reduction in computational accuracy. In this work, a

second-order accurate treatment of the boundary condition in the LBE method is

developed for a curved boundary. The proposed treatment of the curved boundaries

is an improvement of a scheme due to O. Filippova and D. Hanel (1998, J. Comput.

Phys. 147, 219). The proposed treatment for curved boundaries is tested against

several flow problems: 2-D channel flows with constant and oscillating pressure

gradients for which analytic solutions are known, flow due to an impulsively started

wall, lid-driven square cavity flow, and uniform flow over a cohinm of circular

cylinders. The second-order accuracy is observed with a solid boundary arbitrarily

placed between lattice nodes. The proposed boundary condition has well-behaved

stability characteristics when the relaxation time is close to 1/2, the zero limit of

viscosity. The improvement can make a substantial contribution toward simulating

practical fluid flow problems using the lattice Boltzmann method. © 1999AcademicPress

I. INTRODUCTION

There has been a rapid progress in developing and employing the method of the lattice

Boltzmann equation (LBE) [1-3] as an alternative computational technique for solving

complex fluid dynamic problems (see the comprehensive reviews in [4, 5]). In a traditional

method for computational fluid dynamics (CFD), the macroscopic variables, such as ve-

locity u and pressure p, are obtained by solving the Navier-Stokes (NS) equations [6-8].

The lattice Boltzmann equation approximates the kinetic equation for the particle mass
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distribution function f(x, _, t) on the mesoscopic level, such as the Boltzmann equation

with the single relaxation time approximation [9],

8f 1 f(o)),
0t + _" Vf = -_(f - (1)

where ( is the particle velocity, f(0) is the equilibrium distribution function (the Maxwell-

Boltzmann distribution function), and L is the relaxation time. The right hand side (RHS)

term models the effect of the fluid viscosity on the molecular level through the collision

(relaxation) process. The macroscopic quantities (such as mass density p and momentum

density pu) are the hydrodynamic moments of the distribution function f,

(2a)

(2b)

It has been shown that the velocity space _ can be discretized into a finite set of points

{{,_} without affecting the conservation laws [10-12]. In the discretized velocity space the

Boltzmann equation (1) becomes

oio + ¢. vI_ = -1(I_ - I_"_))Ot
(or = 0, 1, 2 ..... 8 for 2-D) (3)

for the distribution function of discrete'velocities f_(x, t) = f(x, _,, t). The equilibrium

distribution function, f_eq) and the discrete velocity set {_j,_} can be derived explicitly

[10-12].

For the 2-D square lattice shown in Fig. 1, we use e,_ to denote the discrete velocity set,

and we have [13]

4 3 2

6 8

FIG. 1.

7

A 2-D, 9-bit (or 9-velocity) lattice.
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e. =0, fora=O,

eu = (cos((o_- 1)rr/4), sin((ol- 1)7r/4))

e_ = 4_(cos((a - 1)rr/4), sin((a - 1)rr/4))

forc_ = 1, 3,5,7,

fora = 2,4,6, 8,

(4)

where c = 8xfiSt, 3x, and 3t are the lattice constant and the time step size, respectively, and

f(eq) PW_ [ 1+ 3 2@ 3 1_= = --czea.u+ (eu.u) 2--2c 2u.u , (5)

where

4/9, ce = 0
w_ = 1/9, oe = 1, 3, 5, 7

1/36, c_ = 2, 4, 6, 8.

With the discretized velocity space, the hydrodynamic moments are given by

(6)

8 8

o_=0 ot=O

(7a)

and

8 8

= e_jg .
o'=1 ct=|

(7b)

The speed of sound of this model is c, = c/.v/-3, and the equation of state is that of an ideal

gas,

p =pc . (8)

Equation (3) is one of numerous ways to model the transport equation of f, Eq. (1).

Based on the Chapman-Enskog analysis, the solution for f_(x, t) may be expanded in
the form of

f_(x, t) = f_eq)(x, t) + f_l)(x, t) +..., (9)

where f_l) in Eq. (9) is formally smaller than f2eq) in the expansion. Substitution of Eq. (9)

into Eq. (3) leads to

r Of (_q) ]f(_l)(X,t) = --Z[L_t +e. . V f(Jq) . (I0)

Proceeding with the Chapman-Enskog analysis, it can be shown that the Euler equations

can be recovered from the solution for f_eq) and the NS equations are recovered in the

near incompressible limit (i.e., the Mach number M = [ul/c, _'. I) by the first two terms in

Eq. (9). The viscosity of the fluid is

v=Xc_. (11)
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Equation(3)canbefurtherdiscretizedinspaceandtime.'The completely discretized

form of Eq. (1), with the time step St and space step east, is

1 x
fu(xi + euSt, t -_-St) - fu(xi, t) = --_ [f,_( ,, t) - f(aeq)(xi, t)], (12)

where _ = ;_./_t, and xi is a point in the discretized physical space. The above equation is

the lattice Boltzmann equation [ 1-3] with Bhatnagar-Gross-Krook (BGK) approximation

[9]. The left-hand side (LHS) of Eq. (12) is physically a streaming process for particles

while the RHS models the collisions through relaxation.

Although the lattice Boltzmann equation historically originates from the lattice gas cel-

lular automata [14, 15], it is indeed a special finite difference form of the continuous

Boltzmann kinetic equation, i.e., the LHS of Eq. (3) is discretized along the direction of the

characteristic line with discretization of phase space and time tied together [10, 11]. The

leading order truncation error of such a discretization is then taken into account exactly by

modifying the viscosity in the NS equation derived from Eq. (12) to

v= (r-1)c_St. (13)

The positivity of the viscosity thus requires that r > 1/2. The lattice Boltzmann scheme

consists of two computational steps,

collision step f_(xi, t) - f_(xi, t) = __1 [f_(x_, t) - f(eq)(x_, t)] (14a)

streaming step fu(xi + east, t + St) = fu(xi, t), (14b)

where f,_ and fu denote the pre- and post-collision state of the distribution function, re-

spectively. The advantages of solving the lattice Boltzmann equation over the NS equations

can now be seen. In the kinetic equation for fu given by Eq. (3), the advection operator

is linear in the phase space whereas the convection term is nonlinear in the NS equation.

In traditional CFD methods, the pressure is typically obtained by solving the Poisson or

Poisson-like equation derived from the incompressible NS equations that can be time con-

suming. In the LBE method, the pressure is obtained through an extremely simple equation

of state p = pc s. This is an appealing feature of the LBE method. The discretized Eq. (14)

for f,_ is explicit in form, easy to implement, and natural to parallelize. The collision step

is completely local. The streaming step takes very little computational effort at every time

step.

However, unlike solving the NS equations for which the non-slip condition for u on a

solid wall is satisfied at the macroscopic level, there is no corresponding, physically based

boundary condition for f_ on a solid wall at the mesoscopic level. For a lattice node located

on the fluid side at x/, as illustrated in Fig. 2, Eq. (14b) clearly indicates a need for the

information of f_ at Xb on the solid side. Therefore all the effort in the previous treatment

of the boundary conditions in the LBE models is mainly focu,;ed on the calculation of f,,

moving from the wall into the fluid region. In previous works of the LBE, the most often

used boundary condition on the wall is the so-called bounce-back scheme [ 16-18]. In the

bounce-back scheme, after a particle distribution f,_ streams from a fluid node at x/ to a

boundary node at xt, along the direction of e,,, the particle distribution f,_ scatters back to
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%

FIG. 2. Layout of the regularly spaced lattices and curved wall boundary.

the node Xf along the direction of e,i(=-e,,) as f,_. Since the wall position xw was forced

to be located at xb, this is referred to as bounce-back on the node (BBN) [19]. However,

a finite slip velocity at the stationary wall exists [20, 18] and the accuracy for the flow

field is thus degraded due to the inaccuracy of the boundary conditions [17]. In simulating

suspension flows using the LBE, Ladd placed the solid walls in the middle between the

lattice nodes [21]. This is referred to as bounce-back on the link (BBL). It has been shown

that the BBL scheme gives a second-order accurate result for straight walls [24, 18]. Noble

et al. developed a second-order accurate boundary condition to compute f,, but it is only

applicable to straight walls in triangular lattice space [22]. He et al. generalized the scheme

of Noble et al. to arbitrary lattice [18]. Chen et al. placed the wall on the lattice node so

that xb is one lattice inside the wall [23]. They used an extrapolation of fc, on the fluid side

(including the wall node) to obtain f,_ atxb. Zou and He proposed to apply the BBL scheme

only for the non-equilibrium part of f,_ at the wall [24].

For a curved geometry, the use of BBL requires approximation of the curved solid bound-

ary by a series of stair steps. The geometric integrity cannot be preserved by such an ap-

proximation. For high Reynolds number flows, the integrity of geometry is important since

the vorticity generation and stress distributions are sensitive to the geometrical resolution.

To this end, He and Luo proposed to use the LBE with nonuniform grid with second order

interpolations [10, 25, 26]. He and Doolen further applied the interpolation to the LBE

with curvilinear coordinates or body-fitted coordinates [27]. Mei and Shyy solved Eq. (3)

in curvilinear coordinates using the finite difference method [28]. While the wall geom-

etry is accurately preserved in body-fitted coordinates, the flexibility to handle complex

geometries is maintained by using the numerical grid generation techniques common to

the Navier-Stokes solvers. It should be noted that perhaps the most profound and rigor-

ous theoretical treatment of the boundary condition along the wall is given by Ginzbourg

and d'Humi_res [29]. The scheme proposed by Ginzbourg and d'Humi_res is local and

accurate up to second order in Chapman-Enskog expansion. However, this work has not



312 MEt,LUO,ANDSHYY

attractedsufficientattentionbecauseitsimplementationisnotaseasyasthebounce-back
scheme.

Inthiswork,arobust,second-orderaccuratetreatmentforthedistributionfunctionf,_
near a curved boundary is developed based on the method recently proposed by Filippova

and Hanel (hereinafter referred to as FH) [30]. In Ref. [30], the boundary condition for

f_, on the solid side is evaluated using Eq. (3) for f_, and the Taylor series expansion in

both space and time for f_, near the wall. FH reported numerical results for a uniform flow

over a cylinder [30]. However, it is found in this work that when tested in a pressure driven

channel flow (see implementation and discussions in Section II) there is a strong boundary-

condition-induced instability when the distance from the wall to the first lattice on the fluid

side is less than half of the lattice size.

Using the Taylor series expansion for the velocity u near the wall, a new treatment

for f_ near a curved wall is proposed in this work. While maintaining a second-order

accuracy of the solution in handling curved walls, the computational stability is improved

so that lower viscosity, or higher Reynolds number, can be attained in the LBE simulations.

The new boundary condition treatment is tested systematically to assess the temporal and

spatial accuracy and robustness in 2-D channel flow with constant and oscillating pressure

gradients, flow due to an impulsively started wall, lid-driven square cavity flow, and flow over

a column of circular cylinders. Detailed comparisons for the flow field are made with either

analytic solutions or well-resolved numerical solutions of the Navier-Stokes equations by

using a finite difference method. The improved boundary treatment represents a significant

step towards solving practically relevant flow problems using the LBE method.

II. FORMULATION FOR THE IMPROVED BOUNDARY CONDITION

Filippova and H_inel [30] considered a curved boundary lying between the lattice nodes

of spacing gx, as illustrated in Fig. 2, and briefly presented the derivation of their scheme

for the treatment of a curved boundary. However, they did not offer explanation to justify

the theoretical basis of their method. It is instructive to first reexamine their derivation

thoroughly. Based on the insight gained, an improved boundary treatment is then proposed.

A. Reexamination of and Comments on the Filippova-HiT"nel Treatment

The macroscopic flow has a characteristic length of L. The lattice nodes on the solid and

fluid side are denoted as x_ and x f, respectively, in Fig. 2. The filled small circles on the

boundary, xw, denote the intersections of the wall with various lattice links. The boundary

velocity at xw, the intersection with the wall on the link between xb and xy, is Uw. The

fraction of an intersected link in the fluid region is A, that is,

A- Ixf--x_l (15)
txf - xbl

Obviously, 0 < A < 1 and the horizontal or vertical distance between Xb and xw is A • _x

on the square lattice. Suppose the particle momentum moving from xf to Xo is e_ and the

reversed one from Xb tO xf is ea = --e_,. After the collision step, f,, on the fluid side is

known, but not on the solid side. (Hereafter we shall use ea and f,_ to denote the velocity

and the distribution function coming from a solid node to a fluid node, and f,_ is the unknown
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tO be computed.) To finish the streaming step,

fa(xf =Xb +ea_t,t +_t) = f_(xb, t), (16)

it is clear that fa(Xb, t) is needed. To construct f_(xb, t) based upon some known in-

formation in the surrounding, Filippova and H/inel essentially proposed using the linear

interpolation [30],

3

f_(Xb,t) = (1-- X)f_(Xf, t) + xf(*)(Xb, t) + 2W_p-_e_.uw, (17)

where Uw =u(xw, t) is the velocity at the wall and X is the weighting factor (to be de-

termined) that controls the linear interpolation (or extrapolation) between fa(xy, t) and

f_,(Xb, t), a fictitious equilibrium distribution function given by

E ]f(_*)(Xb, t) = wap(xf, t) 1 + -_e_. Ubf + (e_ • uy) 2 -- -_-_c2Uy• u/ . (18)

In the above, u: =u(xj, t) is the fluid velocity near the wall and uof is to be chosen. It is

emphasized here that the weighting factor X depends on how abf is chosen. However, the

choice of uof is not unique. For example, either Ubf = Uf or a linear extrapolation using

Ubf = (A -- 1)uf/A + uw/A appears reasonable.

To determine X in Eq. (17), FH considered flows under the condition

L/(cT) << 1, (19)

i.e., the flow has an intrinsic characteristic time scale T that is much larger than the advection

time on the lattice scale, L/c. This "slow-flow" condition enabled FH to approximate

fa(xf, t + 80 in Eq. (16) by fs(xf, t),

fe_(xy = Xb +eaSt, t + St) = fs(xy, t) + 8t _ +....

For the purpose of the order-of-magnitude estimate, it is seen that O(Of_/Ot) = O(fa/T)

so that

fa(xf,tq-_t)= fa(xf, t) 1+0 = fa(xf,t)[l+O_-L-_) _ fa(xf, t). (20)

It is noted that under condition (19) the neglected terms are of Or _ L_ which are much
"L cT _

smaller than the O (_) terms of present interest (in deriving an accurate boundary condition

for fa (Xb, t)). Applying the Chapman-Enskog expansion in the form given by Eqs. (9)-(10)

and invoking the "slow flow" approximation, one obtains

f6t(Xf, l) = f(eq)(xf, t) -- _. LOt + e8 • V.f_ q +...

f_eq)(x f, t) -- )_e_ • V f eq -t-.... (21)

For f(eq) given by Eq. (5), the leading order term in Vf_ q is given by pw_(3/c2)ea • Vu

since the rest are higher order terms in the near incompressible flow limit. Noticing that
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_.= r3t,Eq.(21)becomes

fa(x/, t) _ f(_eq)(xf, t) 3- z_tpw_-_e_ • Vu • e_

3 3

= f(eq)(xf, t) -- 2pw_--_uf • e_ - ratpw_-_e_ • Vu .ea (22)

which approximates the LHS of Eq. (16). To expand the RHS of Eq. (16) in terms of the

small computational parameter

6x cSt
-- =-- << 1, (23)
L L

it is first noted that f_*)(Xb, t) in Eq. (18) can be expressed as

3

f_*)(xb, t) = f_'°)(x/, t) + w_p-_e_ . (Ubt -- Uf)
(24)

so that the RHS of Eq. (16), or Eq. (17), can be rewritten as

fa(xb, t)

3

,_ f_eq)(xf, t) --}-(1 -- ;()(1 - 1/_)f(l)(xf, t) + w_p-_e_ . ()_lgbf -- XUf -- 2uw)

3

= f(jq)(x/, t) - (1 - )c)(r - 1)6tw_p-_e_ • Vu .e_

3
+ w_p--4e_ • (Xllbf -- XUf -- 2uw). (25)

c"

Based on linear interpolation, ub/_ (A - 1)uf/A + u_/A, expanding the velocity uf near

the wall (Xw) using Taylor series, and noticing that Xb --X/= 3te_, one obtains ubf -

uf -_ 3tVu • e_. Equating Eqs. (22) and (25) and matching terms linear in 3t results in

X = (2A -- 1)/z. For uby = u f, we have ubf - uf = 0 in Eq. (25). Matching to O(6t) then

requires X = (2A - 1)/r = (2A -- l)/(r -- 1). FIt found that ub/= (A -- l)uf/A nt- uw/A

gives computationally stable results only for A > 1/2. Hence, they proposed that

1

ubf = (A - 1)u//A +u_/A and X = (2A - l)/r for A > _ (26)

and

1

Igbf = Uf and X = (2A -- 1)/(r - 1) for A < _. (27)

To recapitulate, there are three independent assumptions that have been made in the

foregoing derivation. These are: (i) the Chapman-Enskog expansion in the form given by

Eqs. (9)-(10) is valid; (ii) the intrinsic time of the unsteady flow must be large compared

with the advection time on the lattice scale given by Eq. (19); (iii) the lattice space must

be small compared with the characteristic length scale of the flow as given by Eq. (23) so

that the Taylor series expansion for the velocity field near the wall is valid. There have been

a large number of papers in the existing literature regarding the validity and usefulness of

Chapman-Enskog expansion for the solution to the Boltzmann equation. The "slow flow"
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FIG. 3. Lattice distribution in channel flow simulations w ith arbitrary A.

condition is introduced to simplify the derivation of the boundary condition for f,_; the

implication of this assumption will be briefly addressed later in comparing the computational

results with that based on the conventional bounce-back scheme. The last assumption is a

typical computational resolution requirement.

Equation (17) is essentially a linear interpolation (or extrapolation) and is used continu-

ously in the computation. When the weighting factor X becomes too large, instability may

develop. For A > 1/2, Ixl = [2A - ll/r is always less than 2 since the positivity of the

viscosity in the LBE scheme requires z > 1/2. For A < 1/2, 17.1= 1(2A - 1)/(3 - 1)1 and

it may become too large when r is near 1. To illustrate this point, a fully developed pressure

driven 2-D channel flow is considered. The grid arrangement is shown in Fig. 3. For steady

flow, a constant pressure gradient Vp along the x-direction is applied and can be treated as

a body force. This is included [32] after the collision step by

3 dp
f_,fxi, t) = f_,(xi, t) - wc,-_-i-_xe_, ..f, (28)

where _ is the unit vector along the x-axis. The boundary condition for f_, (xi, t) on the wall

follows those given by Eqs. (17), (18), (26), and (27). At the inlet (i = 1) and exit (i = Nx,

in which Nx is the number of lattices in the x-direction) the following is imposed,

f,_(i = 1, j) = fa(i = 2, j),

f_(i = Nx, j) = f_(i = Nx - 1, j).

(29)

(30)

With Eq. (29), the velocity profile at the inlet, Ux(i = 2, j), is not needed. Instead, the fully

developed velocity profile is sought as part of the solutions. In this part of the investigation,

Ny = 35 is used. The exact solution for the velocity profile (given by Eq. (36)) is used

as the velocity initial condition which differs from the final steady state solution due to

numerical errors. The equilibrium distribution function f(jo) based on the exact solution
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FIG. 4. (a) Regions of stability and instability in the LBE computation for fully developed 2-D channel flow

using FH's boundary condition, Eqs. (17), (18), (26), (27), for A < 1/2. (b) Regions of stability and instability

in the LBE computation for 2-D channel flow entrance problem using FH's boundary condition, Eqs. (17), (18),

(26), (27), for A < 1/2.

for the velocity profile is used as the initial condition for f,_. The pressure gradient is set to

dxdP= -- 1.0 x 10 -6. All computations are carried out using double precision.

For A < 1/2, it is found that the computation is unstable for certain range of values of

r. Figure 4a shows the stability-instability boundaries in the (r, A) space obtained from a

large number of computations. For A < 0.2, the computation becomes unstable when r < 1.

The large instability region is an apparent source of concern for FH's scheme when A < 1/2

since lower viscosity can only be achieved when r is close to 1/2.

One may speculate that the instability in the above example results from the lack of

specifying an inlet velocity profile, Ux (y), or due to the extrapolation of f,_ at the inlet given

by Eq. (29). To examine this possibility, a channel flow entrance problem is considered.

Uniform velocity profiles, ux (y) = -(H2/12pv)(dp/dx) and Uy(y) = 0 in which H is the

channel height, are specified at i = 1.5 (half-way between the first and second lattices) and

the distribution functions f_(i = 1, j) for ¢z = 1, 2, and 8 are obtained using Eq. (17) with
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X = 0 in accordance with A = 1/2 at i = 1.5. The boundary conditions on the wall are

based on Eqs. (17), (18), (26), and (27). The exit boundary condition for the f,_ 's is given by

Eq. (30). Hence the extrapolation for f,_ at the inlet is completely eliminated and the velocity

profiles at the inlet are exactly given. Two types of initial conditions are used. Whenever

possible, the equilibrium distribution functions corresponding to the uniform inlet velocity

are specified at t = 0 throughout the flow field. This works for relatively larger values of r.

However, instability can be encountered when r is considerably larger than the upper dash

curve shown in Fig. 4a for the same value of A (< 1/2). A second type of initial condition is

thus implemented. A converged solution at a relatively large value of r is used as the initial

condition for a smaller value of r. The value of r is incrementally decreased to obtain the

converged solutions for the new, smaller values of r. When the actual instability region is

approached, the increment in r is maintained as small as 0.01 or 0.005. In the computation,

a_£ - 1.0 x 10 -6, Ny = 35, and Nx = 65 are used. When the Reynolds number is low (duedx

to the use of the small pressure gradient and larger r), the exit velocity profile is very close

to the exact solution corresponding to the fully developed channel flow which validates the

solution procedure.

The stability-instability boundaries obtained through a large number of computations

are shown in Fig. 4b. It is noted that the stability-instability boundaries are very similar to

that shown in Fig. 4a for the fully developed channel flow despite the dramatic difference

in the inlet boundary condition. Thus the source of the instability must result from the

implementation of the solid wall condition. An alternative scheme must be developed to

overcome this shortcoming.

B. Improved Treatment for a Cun,ed Boundary

We realize that the flexibility in the construction of f_*)(x_, t) is the key to achieving an

improved computational stability as well as accuracy. Since X = (2A -- 1)/(r -- 1) given

by Eq. (27) leads to a larger value of X when r is close to 1, it is desirable to reduce the

magnitude of X by increasing the magnitude of the denominator in the expression for X.

For A > 1/2, ubf is the fictitious fluid velocity inside the solid and the denominator for X

is r. For A < 1/2, ubf was chosen by FH to be uf which is the fluid velocity atxf and it

leads to (r - 1) in the denominator for X- Thus, we propose to use Eq. (26) for A > 1/2
and use

ubf = uff = uy(x y + ea&, t)
1

for A < -. (31)
2

Thus

igbf -- Igf = Uf(gf + east, t) -- uf(xy, t) = -StVu • e,. (32)

This requires

-r(1 - X)(I - l/r)- X = 2A-- (33)

to match the O(_t) terms in equating Eqs. (22) and (25). Hence

X = (2A -- 1)/(_ --2)
1

for A < -. (34)
2
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FIG. 5. (a) Regions of stability and instability in the LBE computation for fully developed 2-D channel

flow using the present boundary condition, Eqs. (17), (18), (26), (31), (34), fo: A < 1/2. (b) Regions of stability

and instability in the LBE computation for the 2-D channel flow entrance problern using the present boundary

condition, Eqs. (17), (18), (26), (31), (34), for ,5 < 1/2.

To test the improvement in the stability, the steady state, fully developed, pressure driven

2-D channel flow is again considered• Equations (31), (34) are used in lieu of Eq. (27). The

rest of the implementation is exactly the same as described irL the last section. Figure 5a

shows the stability-instability boundary in the (r, A) space for the fully developed channel

flow. By comparing Fig. 5a with Fig. 4a, the improvement in the stability of the present

treatment for this simple geometry case is clearly seen.

For the channel flow entrance problem, boundary conditions at the inlet and exit and

the procedure for specifying the initial conditions are the same as described in the last

section. Equations (31), (34) are used to replace Eq. (27) for the solid wall. The stability-

instability boundary in the (v, A) space for the entrance flow problem is shown in Fig. 5b.

Close agreement in the stability-instability boundaries between Figs. 5a and 5b suggests

that the improvement in the computational stability is not related to the treatment of the

inlet boundary conditions. The improvement results rather from the different treatment in
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the solid wall boundary condition. A direct consequence of this improvement is that lower

values of r, or lower viscosity u, can now be used.

One may speculate at this point that Uf(Xf + 2eaSt, t) can also be used for uby when

A < 1/2. This would further improve the stability since X = (2A - 1)/(r - 3). This is

correct in principle. However, since the use of Uf(Xf -'1-e_t, t) as Ubf already allows the

use of r whose value is close to 1/2, there is little practical need to use uy that is too far

away from the wall.

For transient flows, a second-order extrapolation can be used for

Ubf --

A-1 1 1-A

A U(Xy, t) + -_u(xw,t) + A(1 + A) [u(xw't) - (1 + A)u(xf,t)

1

+ Au(xy + east, t)] for A > 97'
(35)

This treatment helps to improve the accuracy in the velocity approximation when u(x, t) is

not well resolved near the wall. Finally, it is easily seen that the present boundary condition

treatment can be extended to 3-D flow problems involving curved geometry. The efficacy

of such an extension will be examined in another paper.

III. RESULTS AND DISCUSSIONS

For the proposed boundary condition treatment to be useful, several issues need to be

addressed: spatial and temporal accuracy, ability to handle geometric singularity, and the

flexibility to handle complex geometry. Channel flows with constant and sinusoidally oscil-

lating pressure gradients with analytic solutions are used to assess the spatial and temporal

accuracy. The Stokes first problem (i.e., the flow due to an impulsively started wall) allows

one to examine the response of the computed flow field to an imposed singular acceleration.

The standard lid-driven cavity flow has a bounded domain but possesses stress or vorticity

singularities near the comers between the moving and stationary walls. Finally, flow over a

column of circular cylinders is the case used to assess the impact of the boundary treatment

on the accuracy of the flow field around a curved boundary.

A. Pressure Driven Channel Flows

At steady flow, the exact solution for the x-velocity profile is given by

i dp H 2
Uexaa(y) -- (172-- r/), (36)

2 dx pv

where H = Ny - 3 + 2A and r/= y/H = (j - 2 + A)/H. To assess the computational error

of the LBE solution of the velocity, u_E(y), the following relative L2-norm error is defined

E2 = { f°n [u/.se(y) - u ex,ct(Y)l 2dy } t/2 (37)

[fo u uZ_ac,(y) dy] 1/2

With the oscillating pressure gradient, _ = Be -i_'r, the exact solution can be easily

expressed in complex variables. An important parameter in this flow is the Stokes number
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St defined as

St = _. (38)

The Stokes number is the ratio of the channel height H to the thickness of the Stokes layer

,,/5-7-_. Since the error can vary with time, a time average over one period (T = 2rr/o)) is

needed and the relative error is

E2 = {f: foH[ULBE(Y' t) -- U¢ract(Y, t)] 2 dy dt} 1/2 (39)

[ fr f_ U2c,(Y,t)dy dt ]1/2

In the BGK model, At = Ax = Ay = 1. Comparing with the channel height H = Ny - 3 +

2A, the dimensionless grid size (or grid resolution) is H 1.

Figure 6a shows the dependence of the relative L2-norm error on the channel height

H for r =0.55 and ?x =0.0, 0.25, and 0.5. A maximum value of Ny = 131 is used. The

second-order accuracy is demonstrated in the range of H investigated. It has been well

established that the accuracy of the LBE method for the interior points is of second order.

The fact that the overall accuracy is of second order in the present case means that the

accuracy in the boundary condition is at least of second order. It is worth noticing that the

derivation given in Section II ensures that f,, is second-order accurate near the wall. It does

not guarantee the second-order accuracy of the velocity field near the wall. To address this

issue, the wall slip velocity, uw = ux (y = 0), is evaluated using a second-order extrapolation

based on ux(y = A), ux(y = 1 + A), and ux(y =2 + A). Since the true wall velocity in

the pressure driven channel flow is zero, the wall slip velocity uw provides a measure of

the accuracy for the treatment of the wall velocity. Figure 6b Shows the dependence of u_,,

normalized by the centerline velocity umax = -(H2/8pv)(dp/dx), on H for A = 0.0, 0.25,

and 0.5 with r = 0.55. Quadratic convergence is clearly observed in all three cases which

demonstrates the second-order accuracy of the velocity field near the solid wall. This is

entirely consistent with the results shown in Fig. 6a which involves global convergence

rather than the local (y = 0) convergence. Figure 6c shows the relative error as a function

of A using the present boundary treatment (Eqs. (17), (18), (26), (31), (34)) for 0 < ,5 < 1.

The error in the range of 0 < A < I/2 is comparable to that in the range of 1/2 < A < 1.

The present boundary condition treatment does not induce larger computational error and

is substantially more robust. Furthermore the second-order accuracy is achieved in general

by the present treatment for A < 1/2.

Figure 7 shows the dependence of the relative L2-norm error on the channel height H

in the oscillating pressure driven channel flow for Stokes number St = H,,/'_7-_ = 1 and 8.

For St = 1, the Stokes layer is as thick as the channel height H. For A = 0.25, 0.5, and 0.75,

second-order accuracy in space is clearly demonstrated. Since the time step St in LBE is

equal to the spatial resolution 8x, the accuracy in time must also be of second-order in

order for the time-averaged Lz-norm error to have a slope of 2 in Fig. 7. For St = 8, the

Stokes layer thickness is about 1/8 of the channel height so that the computational error

due to the insufficient resolution of the Stokes layer is a significant part of the error. For

A = 0.25, the first lattice in the flow field is only a quarter of the lattice size away from

the wall. The Stokes layer is thus better resolved for A = 0.25 (denoted by solid circles in

Fig. 7) than for A = 0.5 and 0.75. However, as H increases, the difference between A = 0.25
and A = 0.5 and 0.75 becomes smaller since all have reasonable resolutions in the Stokes
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layer. Although the slope for the error curve for A = 0.25 is observed to be about 1.5 that

is less than 2, it is an indication of the better-than-expected accuracy at the low resolu-

tion end.

B. Stokes First Ptvblem: Flow Due to an Impulsively Started Wall

For a wall located at y = 0 that is impulsively started, an unsteady Stokes layer of thickness

O(v/'_) develops near the wall. For a fixed-grid computation, the error at small time is

expected to be large due to insufficient spatial resolution. In the LBE method, this is also

compounded by the use of fixed 3t (= 3x = 8y = 1). Figure 8 shows the velocity profiles

at t = 100 (in lattice unit). The wall velocity is V = 0.1 in lattice unit. The relaxation time

z = 0.52 gives kinematic viscosity v = 0.0067. Similar to the oscillating pressure driven

channel flow, the error is smaller for A = 0.25 than for A = 0.5 and 0.75 due to a better

spatial resolution near the wall. Figure 9 shows the temporal variation of the relative L2-
norm error defined as

{ fo [ULBE(y, t) -- Uexact(Y, t ) ]Z dY } 1/2
E2 (40)

[fo U_act(Y't) dy] 1/2

for A = 0.25, 0.5, and 0.75. The result using the standard bounce-back on the link (BBL)

scheme, which always sets A = 0.5, is also shown. The large relative errors in the beginning

are due to the smaller values of the denominator in the above equation. It should be empha-

sized that this flow at small time is difficult to deal with for any computational technique due

to the singular acceleration and large spatial gradient. For an impulsively started Couette

flow, the long-time solution approaches the exact linear velocity profile because the LBE

method is a second-order accurate one. It is interesting to note that the present boundary
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FIG. 8. Velocity profiles at t = 100 (lattice unit) of an impulsively started plate with various values of A. The

bounce back on the link (BBL) always sets A = 1/2.

condition treatment for A = 0.5 gives a slightly smaller error lhan the BBL scheme in this

highly transient case. In such a transient flow, the computational accuracy in the near-wall

region is typically dictated by the near-wall spatial resolution which must be smaller than

the Stokes layer thickness in order to resolve the local flow field. In a finite difference

calculation for such a flow, 3t and 8x can be independently chosen. If 3x is not sufficiently

small, further reduction in St will not lead to improvement in accuracy. At small t, neither

the BBL scheme nor the present treatment resolved the Stokes layer so that the error is large.

After the Stokes layer grows to a certain thickness, the spatial resolution becomes adequate
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FIG. 9. Relative L2-norm error of the velocity profile ux(y) during the initial transient of the impulsively

started plate with various values of A. The "linear" version of the boundary condition corresponds to Eq. (26).

The "quadratic" version corresponds to Eq. (35). The BBL is limited to A =0.5 only.



324 MEI, LUO, AND SHYY

FIG. 10.

Re = 100.

1.0

0.8

0.6

0.4 •

0.2'

0.0
-0.3

"_--'=0.6,Re=100, Ny=35

.. -. _ ..o- - - A=0.9

'_ - - (t,'--¥ formulation;
_, well resolved finite

difference solution

0.0 0.3 0.6 0.9

u/V

Velocity profiles at the center (x/H = 1/2) in lid-driven cavity flow with various values of A at

and the accuracy then improves• In view of the "slow flow" condition (19) introduced in

the derivation, the performance of the current boundary treatment is comparable or better

than the conventional bounce-back on the link scheme.

C. Flow in a Lid-Driven Square Cavity

Figure 10 shows the velocity profiles at the center (x/H = 1/2) of the cavity of width H

at Re --- 100 with r = 0.6. Only 35 x 35 lattices are used and the cavity width is H = Nx - 3+

2/', = 32 + A. This requires the lid velocity to be V = vRe/H = 3.33/H in the lattice unit. It

has a negligible compressibility effect for H _ 32. A well-resolved finite difference solution

for the velocity field based on the stream function-vorticity formulation is also shown for

comparison. The velocity profile with A = 0.1 agrees well with the finite difference solution.

For A = 0.5, the result is rather reasonable with such a resolution. The difference is slightly

larger on the negative velocity part for A = 0.9. The corner singularity in stress (or vorticity)

is well handled for r = 0.6 and Nx = 35. However, for r close to 0.5 and with Nx = 35,

the corner singularity induces wiggles in the velocity field. This issue will be examined

elsewhere. The flow field for Re = 1000 is obtained with 67 x 67 lattices using A = 0.1,

0.5, and 0.9. Similar behavior in the velocity profiles is observed.

D. Uniform Flow over a Column of Circular Cylinders

To simulate the external ttow over a single cylinder wouht require placing the outer

boundary far away from the cylinder. In order to keep the computational effort at a reason-

able level in using constant space lattices, a column of circuhtr cylinders of radius r and

center-to-center distance H is considered instead. The flow field that needs to be computed

is thus limited to -H < y < H. At y = --H, the lattice is j = 2. The boundary conditions
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atj = I for the f,_'s are given by the following symmetry properties,

f0(i, 1) = f0(i, 3),

f3(i, 1) = fT(i, 3),

f6(i, 1) = A(i, 3),

f_ (i, 1) = fl (i, 3),

f4(i, 1) = f6(i, 3),

fT(i, 1) = f3(i, 3),

f2(i, 1) = fs(i, 3),

fs(i, i) = fs(i, 3),

fs(i, 1) = f2(i, 3).

(41)

Similar conditions hold at y = H for j = Ny. At the inlet, the uniform velocity, u = V, is

specified at i = 1.5. Using A = 0.5, X = 0, Eq. (17) is applied to obtain the fa's at i = 1. At

the exit, a simple extrapolation is used,

f_(Nx, j) = 2f_(Nx - I, j) - f,_(Nx - 2, j) for c_ = 4, 5, and 6. (42)

On the surface of the circular cylinder, Eqs. (17), (18), (26), (31), and (34) proposed in this

paper are used to update the boundary conditions for the f,_'s.

Figure 11 shows the velocity profile u(x =0, y)/V for H/r =20 at Re=2Vr/v = 10

using r = 3.5. Two values of relaxation time r (=0.505 and 0.52.5) are used. For r = 3.5, there

are only 7 lattices from the front to the back stagnation points. The finite difference solution

is obtained using body-fitted coordinates [33] and over 200 grid points are distributed along

the upper surface of the circle. These two solution with r = 0.505 and r = 0.525 are virtually

identical to each other and they are both close to the finite difference solution. Figure 12

shows the centerline (y = 0) velocity variations, upstream and downstream, respectively,

at Re = 10 and 40. The sharp gradient near the front stagnation point, the length of the

separation bubble, the maximum of the separation bubble w_locity, and the recovery of

the wake velocity are all in excellent agreement with the well resolved finite difference

solution.

As can be seen now, an important improvement of the present boundary condition treat-

ment over the bounce-back scheme is that it can preserve the accuracy of the geometry
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I '
0.0

• . . | .... i i i
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........ r=3.5; x---0.525

0.5 1.0 u/V

FIG. 11. Velocity profiles at x = 0 for uniform flow over a column of cylinders. The cylinder has a diameter

(2r) of 7 lattice units. The cylinder center-to-center distance H = 70 lattice units.
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FIG. 12. Centerline (y = 0) velocity variation for a uniform flow over a column of cylinders. Finite difference

results are based on o) - _ formulation and are well resolved. (a) Upstream; (b) downstream.

under consideration. To further demonstrate this point, consider flow over a circular cylin-

der of radius (r) with the coordinate centered at the center of the cylinder. For r -- 3.4

and 3.8, the front stagnation points are located at x -----3.4 and 3.8, respectively. With

the bounce-back on the link (BBL) scheme, the front stagnation points in both cases will

be placed at x = -3.5 which is half-way between the lattice at x = -4 and x = -3 on the

centerline. In the present method, A = 0.6 and 0.2 for r = 3.4 and 3.8, respectively. The
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FIG. 13. Comparison of the velocity profiles at x = 0 for r = 3.0, 3.2, 3.4, 3.5, 3.6, 3.8, and 4.0 for Re = 10

and H/r = 20.

difference in A can be accurately incorporated in the evaluation of f,i (xb, t). This implies

that although the boundary links for r = 3.4 will be different from those for r = 3.8, the

flow fields based on r = 3.4 and r = 3.8 should be nearly the same when the coordinates

are normalized by the radius r. To validate this point, a series of computations are carried

out for r = 3.0, 3.2, 3.4, 3.5, 3.6, 3.8, and 4.0 for H/r =20 at Re= 10. The profiles of

the dimensionless x-component velocity ux/U as a function of y/r at x = 0 are compared

for these seven different radii r in Fig. 13. Excellent agreement is observed. Figure 14

compares the Ux/U as a function of x/r at y = 0 for both the downstream and upstream

regions for these seven different radii. Again, all seven cases compare very well even in the

near wall region. This clearly demonstrates that the present boundary condition treatment

has maintained geometric fidelity even with coarse grid resolutions.

It is noted that the interpolation for fe,(xb, t) given by Eq. (17) is carried along the line

in the direction of e,_. The results for flow over a cylinder are quite satisfactory. Other

interpolation procedures can certainly be devised to use more information on neighboring

lattices in the flow field. However, this will result in a lot more complications in the imple-

mentation. It is not clear if such an attempt will necessarily lead to further improvement

over the present approach.

IV. CONCLUSION

In this work a second-order accurate boundary condition treatment for the lattice

Boltzmann equation is proposed. A series of studies are conducted to systematically vali-

date the accuracy and examine the robustness of the proposed boundary condition in steady

and unsteady flows involving fiat and curved walls. Compared with the existing method for

treating boundary condition in the lattice Boltzmann method, the proposed treatment has

the following advantages: (i) It can preserve the geometry of interest without truncating
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H/r = 20. (a) Upstream region; (b) downstream region.

it into a series of stair steps. (ii) The boundary treatment generally results in solutions of

second-order accuracy for the velocity field in space, and in time for some cases. (iii) Com-

pared with the widely used bounce-back on the link scheme, the present treatment gives

comparable or better results for the flow field under otherwise identical computational

parameters.
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In this work, we investigate two issues that are important to computational effi-

ciency and reliability in fluid dynamic applications of the lattice Boltzmann equation

(LB E): (1) Computational stability and accuracy of different lattice Boltzmann mod-

els and (2) the. treatment of the boundary conditions on curved solid boundaries and

their 3-D implementations. Three athermal 3-D LBE models (QI5D3, QI9D3, and

Q27D3) are studied and compared in terms of efficiency, accuracy, and robustness.

The boundary treatment recently developed by Filippova and H_nel (1998, J. Comp.

Phys. 147, 219) and Mei et al. (1999, J. Comp. Phys. 155, 307) in 2-D is extended to

and implemented for 3-D. The convergence, stability, and computational efficiency

of the 3-D LBE models with the boundary treatment for curved boundaries were

tested in simulations of four 3-D flows: (1) Fully developed ttows in a square duct,

(2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and

(4) a uniform flow over a sphere. We found that while the 15-velocity 3-D (Q15D3)

model is more prone to numerical instability and the Q27D3 is more computationally

intensive, the Q19D3 model provides a balance between computational reliability

and efficiency. Through numerical simulations, we demonstrated that the boundary

treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses

satisfactory stability characteristics. © 200oAcademicrw._s

Key Words: lattice Boltzmann equation; boundary condition for curved geometries;

accuracy; 3-D flows.

I. INTRODUCTION

1.1. Basic Notion of the Lattice Boltzmann Equation

In one fashion or another, conventional methods of computational fluid dynamics (CFD)

compute pertinent flow fields, such as velocity u and pressure p, by numerically solving the

680
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Navier--Stokes equations in space x and time t [1-3]. In contrast, various kinetic methods

use the transport equation, or the Boltzmann equation in particular, for various problems in

fluid dynamics. The Boltzmann equation deals with the single particle distribution function

f(x, _, t), where _ is the particle velocity, in phase space (x, _) and time t. Recently, the

method of the lattice Boltzmann equation (LBE) [4-7] has become an alternative to the

conventional CFD methods employing Navier-Stokes equations. The theoretical premises

of the LBE method are that (1) hydrodynamics is insensitive to the details of microscopic

physics, and (2) hydrodynamics can be preserved so long as the conservation laws and

associated symmetries are respected in the microscopic or mesoscopic level. Therefore,

the computational advantages of the LBE method are attained by drastically reducing the

particle velocity space _ to only a very few discrete points without seriously degrading

hydrodynamics. This is possible because the LBE method rigorously preserves the hydro-

dynamic moments of the distribution function f, such as mass density and momentum

fluxes, and the necessary symmetries [8-10].

One popular kinetic model is the Boltzmann equation with the single relaxation time

approximation [11],

Of I
0--t"+ _" Vf = -_ If - f(0)], (1)

where _ is the particle velocity, f(0) is the equilibrium distribution function (the Maxwell-

Boltzmann distribution function), and _. is the relaxation time. The mass density p and

momentum density pu are the first (D + I) hydrodynamic moments of the distribution

function f and f(0), where D is the dimension of velocity space.

To solve for f numerically, Eq. (1) is first discretized in the velocity space _ using a finite

set of velocities {_,} without affecting the conserved hydrodynamic moments [9-11],

Of,, 1 f(eq)]0-"7+ _' V f,, = -_ [f,_ -- . (2)

In the above equation, f_(x, t) --- f (x, _, t) and f_eq) = f(O)(x ' _, t) are the distribution

function and the equilibrium distribution function of the otth discrete velocity s%, respec-

tively. The 9-velocity (or 9-bit) LBE model on the 2-D square lattice, denoted as the Q9D2

model, has been widely used for simulating 2-D flows. For 3-D flows, there are several

cubic lattice models, such as the 15-bit (Q15D3), 19-bit (QI9D3), and 27-bit (Q27D3)

models [12], which have been used in the literature. All three models have a rest particle

(with zero velocity) in the discretized velocity set {_,_}. A miner variation of those models

is to remove the rest particles from the discrete velocity set; the resulting models are known

as the Q14D3, Q18D3, and Q26D3 models, respectively. The LBE models with a rest

particle generally have better computational stability. For athermal fluids, the equilibrium

distributions for the Q9D2, Q15D3, QI9D3, and Q27D3 models are all of the form [9]

f(eq)=pw_[l+3 9 3 ]-- .u+ u) 2 uc2 e_ _-_c4(e_ . - _--_u . , (3)

where we, is a weighting factor and ea is a discrete velocity, c = &_/_t is the lattice speed, and

_x and 3t are the lattice constant and the time step, respectively. (The values of the weighting

factor w,_ for the Q15D3, Q19D3, and Q27D3 models and the diagrams illustrating the lattice

structures for the Q 15D3 and Q 19D3 models are given in the Appendix.) It can be shown that
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f_eq_isinfactaTaylorseriesexpansionoftheMaxwellianf(0) [8, 9]. This approximation

of f(0) by the above f_q) makes the method valid only in the incompressible limit u/c -+ O.

With the velocity space discretized, the hydrodynamic moments of f and f(0) are eval-

uated by the following quadrature formulas:

p = _ fc_ = _ -_f(eq), (4a)
Ot O_

pu = Z e_ f_ _ .--(eq)= 2..a e_j_ . (4b)

The speed of sound of the above 3-D LBE models is cs = c/V"3 and the equation of state is

that of an ideal gas p = pcZs. The viscosity of the fluid is v = kc_.

Equation (2) is often discretized in space, x, and time, t, into

f_(xi +ea_t,t + _t) -- fa(xi,t) = --l [fu(xi, t) -- f(_eq)(xi,t)l, (5)

where r = L/3t. This is the lattice Boltzmann equation with the Bhatnagar-Gross-Krook

(BGK) approximation [11] and is often referred to as the LBGK model [4, 5]. The viscosity

in the NS equation derived from Eq. (5) is

v = (r - l/2)c_&. (6)

This choice for the viscosity makes the LBGK scheme formally a second order method

for solving incompressible flows [9]. The positivity of the viscosity requires that r > 1/2.

Equation (6) can be solved in the following two steps:

collision step:

streaming step:

1
?a(xi, ,) = fa(xi, t) -- -[f_(xi, t) -- fe(eq)(x,, t)], (7a)

T

f_(xi + e_3t, t + 6t) = f_(xi, t), (7b)

where f,_ denotes the post-collision state of the distribution function. It is noted that the

collision step is completely local, and the streaming step is uniform and requires little

computational effort. Equation (7) is explicit, easy to implement, and straightforward to

parallelize.

1.2. Boundary Condition on a Solid Surface

To date, most Neumann-type boundary conditions for a solid boundary used in the LBE

method are based upon the bounce-back boundary condition: A particle colliding with a sta-

tionary wall simply reverses its momentum. Much of the previous work on LBE boundary

conditions is devoted to the analysis and improvement of the bounce-back boundary condi-

tion [13-21,27]. The bounce-back boundary condition can attain second-order accuracy if

the boundary is fictictiously placed halfway between two nodes. That is, the second-order

accuracy of the bounce-back boundary condition can only be achieved when the boundaries

are located right in the middle of two neighboring lattices [A = 0.5; see Eq. (8)]. (Readers

are referred to our recent work [22] for a summary of the previous work.) This prevents

the direct application of the bounce-back-type boundary conditions to simulate a solid
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FIG. 1. 2-D projection of the layout of the regularly spaced lattices and curved wall boundary.

body with smooth curvature. To circumvent this difficulty, Mei and Shyy solved Eq. (2)

in curvilinear coordinates using a finite difference method to solve for f_ [28]. One can

also use body-fitted curvilinear coordinates with interpolation throughout the entire mesh,

except at the boundaries where the bounce-back boundary condition is used [29]. In more

recent works [22, 23], Cartesian coordinates are adopted with interpolation used only at the

boundaries. These techniques rely on the freedom of using interpolation techniques. We

used the latter technique in the present work.

As shown in Fig. 1 for a 2-D projection involving a 3-D body, the streaming step requires

the knowledge of f_(xb, t), in which ea = -e,_, at x_ on the solid side in order to obtain

fs (xf, St) for the lattice node located on the fluid side at xf = xb + east. Defining

A = Ixf--x_,l (8)
Ix: - xbt

as the fraction of an intersected link in the fluid region, it is seen that 0 < A < 1 and the

horizontal or vertical distance between xb and xw is (1 - A)Sx on the cubic lattice.

Based on the work of Filippova and I-t_inel [23], hereinafter referred to as FH, Meiet al.

[22] proposed the following treatment for fs (xb, t) on curved boundaries:

3
fa(Xb, t) = (1 -- X)fa(xf, t) + xf_*)(xb, t) q- 2wap--zea . uw (9)

C"

with

f_*)(Xb, t) = Wup(xf, t) 1 + _ea • Ub: + (e_ "US) 2 -- _c2Uf " Us
(10)

and

ubf = (A - 1)uf/A + uw/A and X = (2A - 1)/r

Ubf : Uff : Uf(Xf q- e_$t, t) and ;( = (2A - l)/(r -- 2)

forA > I/2 (11)

forA < 1/2. (12)
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It isnotedthatEq.(12)forubf and X differs from that originally proposed by FH. The

choice for ubf given by Eq. (12) improves the computational stability for r < 1 and A < 1/2

[22]. Since Eqs. (9)-(12) are in vector form, they can be directly extended to 3-D flows with

curved boundaries.

1.3. Scope of the Present Work

The present study examines two issues in 3-D incompressible fluid dynamics simulations

with arbitrary boundaries using the LBE method: (i) The performance of various 3-D

athermal LBE models for viscous flows, and (ii) the efficacy and reliability of the extension of

the curved boundary treatment from 2-D to 3-D flows. We focus on the stability and accuracy

of the computation and the robustness in handling an arbitrary curved geometry. In Section II,

a modification of the choice of Ubf and the expression for X when A > 1/2 is proposed in

order to further improve the computational stability of the boundary treatment. In Section III,

numerical results for four 3-D steady flows are examined and various computational issues

are addressed. These four cases are: (i) pressure driven fully developed flow in a square

duct; (ii) 3-D lid-driven cavity flow; (iii) pressure driven fully developed flow in a circular

pipe; and (iv) uniform flow over a sphere. In cases (i) and (iii), the LBE-based numerical

solutions can be compared with known exact solutions so that the accuracy of the LBE

solutions can be determined. The difference in these two cases is that A is a constant in the

square duct while A varies around the solid boundary in the circular pipe. In the lid-driven

cavity flow, the singularities at corners between the moving and stationary walls allows for

a performance assessment of various LBE schemes. The flow past a sphere is an external

flow around a 3-D blunt body. In all four cases, detailed assessments are made in terms of

error norms and velocity profiles. It will be demonstrated that accurate and robust solutions

are obtained using the newly proposed boundary conditions along with the selected LBE

models.

II. MODIFICATION OF THE BOUNDARY CONDITION FOR A > 1/2

Equations (9)-(12) are first applied to a fully developed pressure driven 2-D channel flow

by using the 3-D LBE model Q19D3. At the inlet (i = 1) and exit (i = Nx, in which N, is
the number of lattices in the x-direction) the following zero derivative condition is imposed

after the collision step:

fa(i = 1, j,k) = fu(i = 2, j, k),

fu(i = Nx,j,k) = fa(i = Nx - 1,j,k).

(13)

(14)

At k = 1 and k = Nz, the same is imposed:

f_(i,j,k = I) = f_(i,j,k =2),

f_(i, j, k = Nz) = f,_(i, j, k = N: - 1).

(15)

(16)

The constant pressure gradient Vp along the x-direction is treated as a body force and is

included in the solution procedure after the collision step and the enforcement of the above
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FIG. 2. Stability boundary of FHs scheme in a square duct flow for A near I.

zero-derivative conditions as

3 dp . 3:, (17)
fa(xi, t) = fa(x_, t) - W_c_ d--_ea

where 3: is the unit vector along the x-axis. On the solid walls (y = 0 and y = H), Eqs. (9)-

(12) are used. The exact solution for the velocity is used as the velocity initial condition. The

equilibrium distribution function f<eq) based on the exact solution for the velocity profile

is used as the initial condition for fa. The pressure gradient is set to ap = _ 1.0 × 10-6. Alldx
computations are carried out using double precision.

It was found that the computations are stable for r close to 0.5 (for example, z = 0.505)

as long as A is not too close to unity (for example, A < 0.87). When A, is equal to 1, stable

computation can only be carried out for r no smaller than 0.6. Figure 2 shows the stability-

instability boundary for the channel flow simulation with a system size Nx × Ny x Nz = 5 x

35 x 5, near A = 1. Also shown by the dashed line is the stability-instability boundary for

the channel flow simulation using the Q9D2 model and with a system size Nx x Ny = 5 x 35,
near A = 1. It is clear that similar behavior exists in both 2-D and 3-D channel flow simu-

lations. When the computation for the pressure driven flow in a square duct was carried out

using the Q19D3 formulation, a similar stability-instability boundary was encountered.

Ideally, one would like to use a fixed value of r for the entire range of 0 < A < 1 in a

simulation. Computational stability would then require the use of r around 0.6, instead of

a value that is close to 0.5, which makes it difficult to simulate a lower viscosity or higher

Reynolds number flow. To overcome the restriction imposed by the numerical stability

requirement due to interpolation, it would be useful if one could decrease the value of

X = (2A - 1)/r given by Eq. (11). This can be accomplished by using

uby = [1 - 3/(2A)]uf + 3/(2A)uw and X = (2A - 1)/(r + 1/2) for A > 1/2.
(18)

Thatis,thevelocityubf isevaluatedat(xb-bI/2e_),insteadofatxt,,usingtheinformation

atxf and Xw throughlinearextrapolation.
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With Eq. (18) replacing Eq. (11), the channel flow simulations using the QI9D3 lattice

model are carried out again for A from 0.85 to 1. Satisfactory results for the velocity pro-

files are obtained for z = 0.505 with Nx x Ny × N z = 5 × 35 × 5 in terms of computational

stability. For A < 0.85, the accuracy of the solutions using Eqs. (11) and (18) is the same

when the computations are stable.

III. RESULTS AND DISCUSSIONS

3.1. Fully Developed Flow in a Square Duct

For fully developed flow inside a square duct of height H defined by the region -a < y < a

and -a < z < a, where a = H/2, the axial velocity profile can be found in Ref. [24, p. 123]:

16a z dp _ [ cosh(n_rz/2a) ] cos(nrry/2a) (19)ux(y, z) - #yr 3 dx _ 1 cosh(nrc/2) J n 3
n=J.3,5 ....

Figure 3 compares the exact axial velocity profiles at z = 0 and the LBE-based solution

with A =0,2 and H =2a =32.4. A total of Nx x Ny x Nz = 13 x 35 × 35 grid points are

used. The pressure gradient is _ = -1.0 x 10 -6 and z =0.52. The 19-bit model is used

in the simulations, Excellent agreement was obtained.

Figure 4a shows the dependence of relative L2-norm error,

{f0 H fo b/[ULBE(Y, Z) -- Uexact(Y, Z)]2 dy dz }1/2
E2 = (20)

[f_tfoU2xact(Y,z)dydz] 1/2 '

on the duct height or the lattice resolution H = Ny - 3 + 2A. The integral is evaluated by

0,6 "_---0.52

0 4 Height=32.4

0.2 A=0.2 -N_

• • LBE method _ -0 4

-1.0 T • , • , - , - , • , .

0.000 0.002 0.004 0.006 0.008 0.010 0.012

II X

FIG. 3. Comparison of axial velocity profiles in a pressure driven square duct flow at z --- 0 between the exact

solution and the LBE-based solution with A = 0.2.
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FIG. 4. (a) Dependence of relative L2-norm error on the lattice resolution H = N) - 3 + 2A in steady state

pressure-driven duct flow simulations. (b) Relative L2-norm error as a function of _, in steady-state pressure-driven

duct and channel flow simulations.

the trapezoidal rule. As was demonstrated by Meiet al. [22], the boundary treatment results

in second order convergence for 2-D channel flow. Figure 4a clearly shows that the total

error (from both the flow field and the boundary condition) of the LBE solution in 3-D flow

decays quadratically.

Figure 4b shows the relative L2-norm error E2 as a function of A in the duct flow using

13 × 35 × 35 grid points and r = 0.52. For the purpose of comparison, the relative L2-norm

error in the 2-D channel flow simulation using the Q9D2 model with Ny = 35 and r = 0.52

is also shown. The relative error is larger in 3-D duct flow than in the 2-D channel flow.

Nevertheless, the error exhibits the same qualitative behavior in both 2-D and 3-D as a

function of A.
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It should be noted that the accuracy of the Q9D2 model and the Q 19D3 model is different

in the sense that beyond the conserved moments (density and momentum in athermal fluids),

these two models have different accuracy in preserving higher order moments (fluxes)

[9, 10]. The Q9D2 model preserves all the moments up to second order in momentum

space, which include momentum fluxes, and maintains the isotropy of these moments,

whereas the QI9D3 model can preserve density and momentum, but cannot maintain the

same accuracy and isotropy of the fluxes like the Q9D2 model does. The only 3-D equivalent

of the Q9D2 model in terms of accuracy of the moments is the Q27D3 model [9, 10].

3.2. Simulation Results for 3-D Lid-Driven Cavity Flows

Lid-driven cavity flow has been studied extensively in the CFD community. Most research

has been focused on 2-D problems. Limited numbers of reliable numerical results for

steady state 3-D cavity flows have been obtained in the past several years. In this study, the

multiblock finite difference solution of the NS equations obtained recently by Salom [25]

is used to compare with the present LBE-based results.

The size of the cavity is H 3 the number of grids is Nx x N:_ x N-, and Nx = Ny = Nz.

The driving lid is placed at y = H, moving along the direction of x-axis with a speed

U = 0.1 in lattice units. Figure 5a compares profiles of horizontal velocity ux (y) obtained

using 33 x 33 × 33 lattices with the solution to the NS equations at x/H = z/H = 0.5 for

Re=400. All three LBE models (15-, 19-, and 27-bit) are used. For the 15-bit model,

the computation becomes unstable and blows up at this Reynolds number with 333 lattice

resolution and A = 0.5. For A = 0.5, the 19- and the 27-bit models give very similar ux(y)

profiles and both underpredict slightly the magnitude of the minimum in the profiles. The

19-bit model is also used with A = 0.25; there is a slight overshoot in the velocity profiles

in comparison to the results in Ref. [25]. Figure 5b compares u_ (y) profiles obtained using

the 15- and 19-bit lattice models on the 673 lattice grids and A = 0.5 with the NS solution

[25] atx/H = z/H = 0.5 for Re = 400. Excellent agreement is observed. Clearly, the 19-bit

model is superior to the 15-bit model. Although the 15-bit model requires 21% less CPU

time and storage than the 19-bit model per lattice, it is not as robust as the 19-bit model

and may actually require more CPU time and memory to obtain a reasonable solution since

more lattice points are clearly needed.

It should be noted that the stability property of the 19- and the 15-bit models is signifi-

cantly different. All LBE models have inherent spurious invariants because of their simple

dynamics [30]. However, the stability of the LBE models, which is very much affected

by these spurious invariants, differs from one model to another and also depends on other

factors such as boundary conditions and the local Reynolds number [30]. Among the three

3-D LBE models (Q 15D3, Q 19D3, and D27D3), the QI5D3 model is the least isotropic and

therefore is more prone to numerical instability. This is independently verified in a recent

work by Kandhai et al. [26]. It was observed that the Q15D3 model may induce artificial

checkerboard invariants which are the eigenmodes of the linearized LBGK collision oper-

ator at wave vector k = zr; this can cause spatial oscillations to develop in the flow field at

high Reynolds number [30]. Although it was pointed out that the presence of solid walls can

suppress the oscillation in certain cases, the solid walls in the present case actually excite

the oscillation by producing shear stress singularities at the corners between the moving and

the stationary walls. Clearly, the Q 19D3 model is better suited to handle flow singularities

than the Q15D3 model in this case.
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FIG. 5. Comparison of u, profiles using (a) 33 x 33 x 33 and (b) 67 x 67 x 67 lattices with a Navier-Stokes

(NS) solution at x/H = z/l-t = 0.5 for Re = 400 in a lid-driven cavity flow.

Figure 6a compares the profiles of transversal velocity ur(x) obtained from various

3-D LBE models using 333 lattices (grids) with the NS solution at y/H = z/H =0.5 for

Re = 400. For A = 0.5, we found that the results from the 27-bit model deviate more from

the NS results of Ref. [25] than the results of the 19-bit model with the same resolution in

the spatial region 0.1 < x/H < 0.6. Both models underpredict the extrema of the velocity

profile compared to the NS solution of Ref. [25]. For A = 0.25, the results of the 19-bit
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FIG. 6. Comparison ofu_. profiles using (a) 33 × 33 x 33 and (b) 67 × 6"i x 67 lattices with an NS solution

at y/H =z/H =0.5 for Re = 400 in a lid-driven cavity flow.

model slightly overpredict the extrema, also shown in Fig. 6a. However, the difference is

relatively smaller in both cases. Figure 6b shows velocity profiles with a resolution of 673

grid points and the same Reynolds number Re = 400. With 673 lattice resolution, the result

of the 15-bit model significantly differs from the results of the 19-bit model and that of the

NS solution in Ref. [25]. These comparisons further suggest that the 19-bit model is better

than the 15-bit model in terms of accuracy and stability and better than the 27-bit in terms
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FIG. 7. Effect of Reynolds number on the centerline (x/H = z/H = 1/2) velocity profiles, u_/U, based on

the 19-bit LBE solutions in a lid-driven cavity flow.

of computational efficiency. The 19-bit model represents a good compromise in terms of

both computational efficiency and reliability.

Figures 7 and 8 show the effect of Reynolds number (from 100 to 2000) on the pro-

files of horizontal velocity ux(y) at x/H =z/H =0.5 and transversal velocity ur(x) at

y/H = z/H = 0.5 based on the QI9D3 model. For Re = 100, 400, and 1000, A = 0.5 is

used. It is worth noting that for Re = 2000, the system size of 67:_, U = 0.1, and r = 0.50325,

the LBE simulation with A = 0.5 eventually becomes unstable, although the steady-state

result of Re = 1000 is used as the initial condition for Re = 2000. When A = 0.25 is used on

the 673 lattice system, no computational instability occurs and the steady-state solution is

obtained. Weak spatial oscillations in the u., (y) and u y (X) velocity profiles were observed for

Re = 2000, which indicates that further increase inRe would require better spatial resolution.

It is also worth pointing out that when FH's boundary condition [23] is used for Re = 2000

with A = 0.25, the solution eventually blows up even when converged results (based on the

present boundary condition for A = 0.25) at Re = 2000 are used as the initial condition.

3.3. Fully Developed Flows inside a Circular Pipe

Figure 9 shows the 2-D projection of the discretized domain and the boundary nodes xb

(denoted by solid symbols) on the yz plane for flow inside a circular pipe of radius R = 9.5

lattice units. Geometrically, the LBE simulation of the pipe flow differs from that of the duct

flow in that the fraction of the intersected link A is not constant over the entire boundary.

As seen in Fig. 4b, computational error can vary with A in the duct flow and the difference

in the error can easily be as large as a factor of four for 0 < A _<_1. Furthermore, the error is

the smallest when A is between 0.3 to 0.6. Hence, it is reasonable to expect that the overall

error in the solution will depend on the distribution of A in the entire set of A.
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Figure 10 shows the relative L2-norm error for the axial velocity profile defined as

E2 = { _(YJ'Zk)ea[ULBE(YJ' Z_) -- Uexact(Yj, Zk)] 2 } 1/2

u 2[_'_(ys,z,)_fz exact(Yj, Zk)] 1/2 ' (21)

where f2 is the set of the discrete lattice grids inside the pipe, as a function of radius R

for R = 3.5, 4.5, 5.5, 9.5, 13.5, 18.5, and 23.5. The pressure gradient is _ = -1.0 x 10 .6

and r =0.52. It is noted that each simple summation in Eq. (21) is slightly less than the

exact integration over the entire circle due to the discretization. To ensure that such a

treatment does not affect the qualitative behavior of the error measurement, the centerline

axial velocity, uc, is also compared with the exact solution and the error is defined as:

iUc.LBE -- Uc,exactl

Ec = (22)
luc.e_ac,I

It is seen that E_ behaves very similarly to E2 and both are nonmonotonic. This oscillatory

behavior could be due to the difference in the distribution of A, which in turn results in the

difference of the dissipation due to the interpolation around the boundary. Shown also in

Fig. 10 is the error E2 of the square duct flow solution (with A = 0.2) as a function of equiv-

alent radius H/rr 1/2, which exhibits a quadratic convergence. Despite the nonmonotonic

behavior, it can still be seen that on average, E2 and Ec decay quadratically with increasing

radius and the accuracy in the pipe flow simulation is comparable to that in the square duct

flow simulation.

Figure 11 shows the axial velocity profiles in the pipe for R = 3.5, 5.5, 9.5, and 13.5 in

comparison with the exact solution. Even for a very small radius R = 3.5, the LBE solution

agrees with the exact solution remarkably well. A noticeable discrepancy in the velocity

profile at R =9.5 is also observed in E2 and E_ shown in Fig. 10.
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FIG. 11. Comparison of the axial velocity profiles between the LBE-based and the exact solutions for flow
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3.4. Simulation Results for a Uniform Flow over a Sphere

The conventional LBE scheme uses uniform meshes. Without local mesh refinement, it

is difficult to compute the external flow over a blunt body efficiently since a large number

of grid points in the far field will be wasted• As a first attempt, the flow over a sphere is

computed within a finite region in the transversal directions.

As shown in Fig. 12, the outer boundary is placed at y =-4-H/2 and z =+H/2. At

y = -H/2, the lattice is j =2. The boundary conditions at j = 1 for f,_'s are given by the

following linear extrapolation:

f_(i, 1, k) = 2f_(i, 2, k) - fc_(i, 3, k). (23)

The velocity at j = 2 is set as

u(i, 2, k) = u(i, 3, k). (24)

Y

yml-i.¢2

i!:_ I Jt

---,'- , ............

Y I _al_r 7arY
....... ....... ',

I

I

!

I

I

I

z-_j2

FIG. 12. Schematic for uniform flow over a sphere.
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Comparison of the velocity profiles at x = 0 for r = 3.0, 3.2, 3.4, 3.6, 3.8, and 4.0 for Re = 10 and

Similar treatment is applied at y = H/2 and z = +H/2. The extrapolation condition given

by Eqs. (23) and (24) allow the flow to leave the outer boundary. This helps to reduce the

effect of the outer boundary on the flow field and on the drag fi_rce. At the inlet, a uniform

velocity profile is imposed at i = 1.5 (halfway between the first and second lattice points)

and Eq. (9) is applied to obtain the condition for f_ (i, j, k) with X = 0. At the exit, a simple

extrapolation is used:

fc_(Nx, j, k) = 2 fc_(Nx - 1, j, k) - fc_(Nx -- 2, j, k). (25)

On the surface of the sphere, Eqs. (9), (10), (12), and (18) proposed in this work are used

to update the boundary conditions for f,_'s. Only the 19-bit LBE model is used to simulate

the flow over a sphere.

Figure 13 shows the velocity profile Ux (y) based on a series of computations carried out for

several values of the radius R = 3.0, 3.2, 3.4, 3.6, 3.8, and 4.0 for H� R = 10 at Re = 10. The

results are obtained with r = 0.7. Figure 14 compares the axial velocity profile (at y = z = 0)

for the same set of parameters. It is worth noting that the present LBE computation does

not have sufficient resolution for the given Reynolds number. Yet the velocity profiles agree

with each other accurately. The fact that we have obtained a spatially accurate solution

over a range of radii strongly suggests that the present boundary condition treatment for

curved geometry in the LBE method is capable of handling more complex geometries while

maintaining good accuracy.

VI. CONCLUDING REMARKS

Three 3-D LBE models, including the 15-, 19-, and 27-bit models, have been assessed in

terms of efficiency, accuracy, and robustness in lid-driven cavity flow. While accurate 3-D

results can be obtained by using various LBE models, the 19-bit model is found to be the
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best for the cases investigated. The 15-bit model exhibits velocity oscillations and is prone

to computational instability. The more complicated 27-bit model does not necessarily give

more accurate results than the 19-bit model with the same spatial resolution•

In this study, we have also modified the boundary condition treatment for the LBE method

proposed by Filippova and H/inel [23] and Mei et al. [22] when the fraction of the intersected

link on the boundary A is greater than one half. This improves the computational stability

when A is close to 1 and r close to 1/2.

The simulations for flows in a square duct and in a circular pipe indicate that the current

boundary condition treatment for curved geometries results in second-order accuracy in

3-D flows. The velocity profiles for flow over a sphere show good self-consistency of the

solution over a range of sphere radii used.

APPENDIX

The Q15D3 model has the following set of discrete velocities:

'(0, 0, 0),
(±1, 0, 0)c, (0, 4-1, 0)c, (0, 0, +l)c,

(4-1, 4-1, 4-1)c,

and the weighting factor w,_ is [12]

(2/9,

1, I/72,

ot = 0; rest particle

c_ = 1, 2 ..... 6; group I

ot = 7, 8 ..... 14; group III

ot = 0; rest particle

ot = 1, 2 ..... 6; group I

= 7, 8 ..... 14; group III.

The Q19D3 model has the following set of discrete velocities:

(AI)

(A2)
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ec¢

= 0, rest particle

a = I, 2 ..... 6; group I

ot = 7, 8 ..... 18; group II

(A3)

and the weighting factor w,, is [9]

[1/3,
w,_=_l/18,

1,1/36,

ot = 0; rest particle

oe = i, 2 ..... 6; group I

o_= 7, 8 ..... 18; group II.

(A4)

The Q27D3 model has the following discrete velocities:

e_

I ((_=Ol,'O0);)c, (0, 4-1, O)c, (O, O,-t-l)c,

= /(-+-1, 4-1, 0)c, (+1,0, +l)c, (0, 4-1, 4-1)c,
1,(-t-1, +1, +l)c,

c¢ = 0; rest particle

c_ = 1,2 ..... 6; groupl

= 7, 8 ..... 18; group II

ol = 19, 20 ..... 26; group III

(A5)
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and the weighting factor w_ is [9]

/8/27,

= _2/27,

w,_ / 1/54,
I, 1,/216,

ct = 0, rest particle

a = 1, 2 ..... 6; group I

o_= 7, 8 ..... 18; group II

ct = 19, 20 ..... 26; group III.

(A6)

In the above, c = 8x/St, 3x and 3t are the lattice constant and the time step size, respectively.

The lattice structures for the QI5D3 and QI9D3 models are shown in Fig. AI.
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I. INTRODUCTION

A Background of the lattice Boltzmann equation method

The method of lattice Boltzmann equation (LBE) solves the microscopic kinetic equation

for particle distribution function f(x,_, t), where _ is the particle velocity, in phase space

(x, _) and time t, from which the macroscopic quantities (flow mass density p and velocity

u) are obtained through moment integration of f(x, _, t). Because the solution procedure

is explicit, easy to implement and parallelize, the LBE method has increasingly become an

attractive alternative computational method for solving fluid dynamics problems in various

systems [3-6]. The most widely used lattice Boltzmann equation [3-6] is a discretized

version of the model Boltzmann equation with a single relaxation time approximation due

to Bhatnagar, Gross, and Krook (BGK model) [7]

cOtf + _ . V f -- _[f - f(0)], (1)

where f(0) is the Maxwell-Boltzmann equilibrium distribution function and t is the relax-

ation time. The mass density p and momentum density pu are the first (D+I) hydrodynamic

moments of the distribution function f and f(0) in D-dimensions. It can be shown that the

particle velocity space ( can be discretized and reduced to a very small set of discrete ve-

locities {(_1o_ = 1, 2,... , b}, and the hydrodynamic moments of f and f(0) as well as their

fluxes can be preserved exactly, because the moment integral can be replaced by quadrature

exactly up to a certain order in _ [8-11]. With velocity space _ properly discretized, Eq. (1)

reduces to a discrete velocity model (DVM) of the Boltzmann equation

1

Otfo + _. Vfo = _[fa- f(0)], (2)

In the above equation, f_(x,t) --- f(x,_,t) and f(_°)(x,t) =- f(°)(x,_,t) are the distri-

bution function and the equilibrium distribution function of the a-th discrete velocity _,

respectively. Equation (2) is then discretized in space x and time t into

f_(x, + e_6,, t + r3t) - f_(xi, t) = -l[f_(x,, t) - f(eq)(xi, t)], (3)
T

2



where _-= ._/St is the dimensionlessrelaxation time and e_ is a discrete velocity vector.

The coherent discretization of space and time is done in such a way that 5x = e,_St is

always the displacement vector from a lattice site to one of its neighboring sites. The

equilibrium distribution function f(eq) (x,, t) in the lattice Boltzmann equation (3) is obtained

by expanding the Maxwell-Boltzmann distribution function in Taylor series of u up to second

order [8, 9], and can be expressed in general as

f_(_q) = w_p 1 + e (e_ . u)+ 2c4 (e_ . u) _ - , (4)

where c - 5x/St; 5z is the lattice constant of the underlying lattice space; and coefficient

w_ depends on the discrete velocity set {e_} in D spatial dimensions. In what follows,

we shall use the lattice units of 5_ = 1 and _t = 1. Appendix A provides the details of

coefficient w_ and the discrete velocity set {e_} for the two-dimensional nine-velocity model

(D2Q9) and the three-dimensional nineteen-velocity model (D3Q19) [12]. Figure 1 shows

the discrete velocity sets of the two models. It should be pointed out that there exist other

discrete velocity sets {e_} which have the sufficient symmetry for the hydrodynamics [8, 9].

A comparative study of three three-dimensional LBE models including the fifteen-velocity

model (DgQ15), the nineteen-velocity model (D3Q19), and the twenty-seven-velocity model

(D3Q27), in terms of accuracy and computational efficiency has been conducted by Mei et

al. [2]. It was found that the nineteen-velocity model (D3Q19) offers a better combination

of computational stability and accuracy. The D2Q9 and D3Q19 models will be used in

this study for force evaluation in two-dimensional and three-dimensional flows, respectively.

Equation (3) is conveniently solved in two steps

1 [fa(xi t)-f(eq)(xi, t)], (5a)collision: fa(xi,t) = f_(xi,t)- -_ ,

streaming: f_(xi + eJt, t + St) = f_(xi, t) , (5b)

which is known as the LBGK scheme [3, 4]. The collision step is completely local, and

the streaming step is uniform and requires little computational effort, which makes Eq. (5)

ideal for parallel implementation. The simplicity and compact nature of the LBGK scheme,

however, necessitate the use of the square lattices of constant spacing (5_ = 5v), and con-



sequentlylead to the unity of the local Courant-Friedrichs-Lewy (CFL) number, because

5t = 5_.

B Boundary condition for a curved geometry in the LBE method

Consider a part of an arbitrary curved wall geometry, as shown in Fig. 2, where the filled

small circles on the boundary, x_, denote the intersections of the boundary with various

lattice- to-lattice links. The fraction of an intersected link in the fluid region, A, is defined

A = IIx.:-  wll (6)
IIx:- x ll

by

Obviously the horizontal or vertical distance between xb and xw is Adz on the square lattice,

and 0 <_ A _< 1. In Eq. (5b), the value of _(x_, t) needs to be constructed according to the

location of the boundary and the boundary conditions, if the grid point xi = Xb lies beyond

the boundary. In the past, the bounce-back boundary condition has been use to deal with a

solid boundary in order to approximate the no-slip boundary condition at the solid boundary

[13-21]. However, it is well understood that this bounce-back boundary condition satisfies

the no-slip boundary condition with a second-order accuracy (for Couette and Poiseuille

flows) at the location one half lattice spacing (A = 1/2) outside of a boundary node where

the bounce-back collision takes place; and this is only true with simple boundaries of straight

line parallel to the lattice grid. For a curved geometry, simply placing the boundary half-way

between two nodes will alter the geometry on the grid level and degrade the accuracy of the

flow field and the force on the body at finite and higher Reynolds number. To circumvent

this difficulty, Mei and Shyy solved Eq. (2) in eurvilinear coordinates using a finite difference

method to compute f_ [22]. He and Doolen used body-fitted curvilinear coordinates with

interpolation throughout the entire mesh, except at the boundaries where the bounce-back

boundary condition is used [23]. In the recent works of Filippova and H_inel [24] and Mei et

al. [1, 2], a second-order accurate boundary condition for curved geometry was developed

in conjunction with the use of Cartesian grid in order to retain the advantages of the LBE

method. An interpolation scheme is employed only at the boundaries to obtain ]_(xi, t).



The detailed assessment on the impact of the boundary condition on the accuracy of the

flow field have been given in Ref. [1] for some two-dimensional flows and in Ref. [2] for some

three-dimensional flows.

C Force evaluation and related works

In spite of numerous improvement for the LBE method during the last several years, one

important issue that has not been systematically studied is the accurate determination of

the fluid dynamic force involving curved boundaries. Needless to say, accurate evaluation of

the force is crucial to the study of fluid dynamics, especially in fluid-structure interaction.

Several force evaluation schemes, including momentum exchange [15, 17] and integration of

surface stress [23, 25], have been used to evaluate the fluid dynamic force on a curved body

in the context of the LBE method.

He and Doolen [23] evaluated the force by integrating the total stress on the surface of the

cylinder and the components of the stress tensor were obtained by taking respective velocity

gradients. Even though the body-fitted grid was used, an extrapolation was needed to obtain

the stress in order to correct the half-grid effect due to the bounce-back boundary condition.

Filippova and Hgnel [24] developed a second-order accurate boundary condition for curved

boundaries. However, the fluid dynamics force on a circular cylinder asymmetrically placed

in a two-dimensional channel was obtained by integrating the pressure and deviatoric stresses

on the surface of the cylinder by extrapolating from the nearby Cartesian grids to the

solid boundary [24, 25]. To gain insight into the method of surface stress integration, it

is instructive to examine the variation of the pressure on the surface of a circular cylinder

at finite Reynolds number obtained by using the LBE method for flow over a column of

cylinders (see Ref. [1], and Sec. III B). Figure 3 shows the pressure coefficient

Cp -- p - p_
1 2
7pU

on the surface obtained by using seco'nd order extrapolation where p_ is the far upstream

pressure. Only those boundary points, xw, intersected by the horizontal or vertical velocities,

i.e., el, ca, ca, and eT, are considered in the result given by Fig. 3. If the boundary points



intersectedby the links in the diagonalvelocities,i.e., e2, e4, e6, and es, are also considered,

the variation of Cp would be more noisy. The components of the deviatoric stress tensor

show a similar noisy pattern. It is not clear how the noise in the pressure and stresses

affect the accuracy of the fluid dynamic force in the stress integration method. While the

programming in the extrapolation and integration is manageable in two-dimensional cases,

it is rather laborious in three-dimensional cases.

Instead of the stress integration method, Ladd used the momentum exchange method to

compute the fluid force on a sphere in suspension flow [15]. In the flow simulation using

the bounce-back boundary condition, the body is effectively replaced by a series of stairs.

Each segment on the surface has an area of unity for a cubic lattice. The force on each

link [half-way" between two lattices at x I and xb = (_I + e_St) in which xb resides in the

solid region] results from the momentum exchange (per unit time) between two opposing

directions of the neighboring lattices

1

in which ea - -e_. Whereas the momentum exchange method is very easy to implement

computationally, its applicability and accuracy for a curved boundary have not been system-

atically studied. To recapitulate, there are two major problems associated with the method

of surface stress integration. First, the components of stress tensor are often noisy on a

curved surface due to limited resolution near the body and the use of Cartesian grids. The

accuracy of such a method has not been addressed in the literature. Second, the implemen-

tation of the extrapolation for Cartesian components of the stress tensor to the boundary

surface and the integration of the stresses on the surface of a three-dimensional geometry

are very laborious in comparison with the intrinsic simplicity of the lattice Boltzmann simu-

lations for flow field. The problems associated with the method of the momentum exchange

are as follows. (a) The scheme was proposed for the case with A = i/2 at every boundary

intersection xw. Whether this scheme can be applied to the cases where A ¢ 1/2, when, for

example, the boundary is not straight, needs to be investigated. (b) As in the case of stress

integration method, the resolution near a solid body is often limited and the near wall flow

6



variablescan be noisy. If one uses the momentum exchange method to compute the total

force, it is not clear what the adequate resolution is to obtain reliable fluid dynamic force

on a bluff body at a given (moderate) value of Reynolds number, say, Re _ O(102).

D Scope of the present work

In what follows, two methods for the force evaluation, i.e., the stress integration and the

momentum exchange methods, will be described in detail. The shear and normal stresses on

the wall in a pressure driven channel flow will be first examined to assess the suitability of the

momentum exchange method when A _ 1/2 and analyze the errors incurred. The results on

the drag force for flow over a column of circular cylinders using these two methods will be

subsequently assessed for the consistency. The drag coefficient at Re = 100 will be compared

with the result of Fornberg [26] obtained by using a second-order accurate finite difference

scheme with sufficient grid resolution. For flow over a cylinder asymmetrically placed in a

channel at Re = 100, the unsteady drag and lift coefficients were computed and compared

with the results in the literature. The momentum exchange method is further evaluated for

three-dimensional fully developed pipe flow and for a uniform flow over an two-dimensional

array of spheres at finite Reynolds number. We found that the simple momentum exchange

method for force evaluation gives fairly reliable results for the two-dimensional and three-

dimensional flows.

II. METHODS FOR FORCE EVALUATION IN LBE METHOD

A Second-order accurate no-slip boundary condition for curved geometry

The analysis of boundary conditions for a curved boundary in the lattice Boltzmann

equation is accomplished by applying Chapman-Enskog expansion for the distribution func-

tion at the boundary. The following approximation for post-collision distribution function

on the right-hand-side of Eq. (5b) can lead to a second-order accurate no-slip boundary



condition [1, 2, 24]

fa(xb, t) = (1 - _)L(xf,t) -}- _f2(xb, t) + 2w_p-_ea "Uw, (7)

where

3 (eo. ub_)+ (eo-u_)_- _ _jf2(xb, t) = w_p(xl, t ) 1 +

3

= f(en)(xf,t) + wap(xf,t)-_ea" (Ub$ -- Uf), (8)

and

(2A- 1) 1 (9a)

2__ 3 (2A- 1) 1Ub/= (2A--a)u/+_--_U_, X= (7"+1/:2)' 2 <A< 1. (9b)

The above treatment is applicable for both the two-dimensional and three-dimensional lattice

Boltzmann models.

By substitution of Eq. (8), Eq. (7) becomes

]_(xb,t) = L(x:,t)- >_[L(x:, t)-/2'_)(x:,t)]

2Uw). (10)

Thus, the above treatment of curved boundary can be thought as a modification of the

relaxation (the viscous effect) near the wall (via parameter X), in additional to a forcing

term accounting for the momentum exchange effect due to the wall.

B Force evaluation based on stress integration

He and Doolen [23] evaluated ),he force by integrating the total stresses on the boundary

of the cylinder 0f_:

F = fo/A'h." {-pl + pu[(V:u)+ (V:u)T]}, (11)

where 7i is the unit out normal vector of the boundary Oft. In Ref. [23]_ a body fitted

coordinate system together with grid stretching was used such that a large number of grids



canbeplacednearthe body to yield reliablevelocity gradien_Oiuj. In general, since u is not

the primary variable in the LBE simulations and the evaluation of u using }-:_ e_f_ based

on f_'s suffers the loss of accuracy due to the cancellation of two close numbers in f_'s the

evaluation of the derivative Oiuj will result in further degradation of the accuracy. Filippova

[25] used similar integration scheme to obtain the dynamic force on the body for the force

on a circular cylinder [24] except that the deviatoric stresses were evaluated using the non-

equilibrium part of the particle distribution function [see Eq. (13) below]. However, since

the Cartesian grid was used, the stress vectors on the surface of the body (with arbitrary

A) have to be computed through an extrapolation procedure based upon the information in

the flow field. This leads to further loss of accuracy for finite lattice size 5x when the shear

layer near the wall is not sufficiently resolved.

In Eq. (11), the pressure p can be easily evaluated using the equation of state p = c_p.

1/3 so that p p/3. The deviatoric stress for two-For D2Q9 and D3Q19 models, cs = =

dimensional incompressible flow

= p. (0, j + o .i) (12)

can be evaluated using the non-equilibrium part of the distribution function f(neq) = [f_ _

Tij-_- 1--_ E f_(neq)(X, t)ea,iea, j Des •

where e_,i and e_,j are ith and jth Cartesian component of the discrete velocity e_, respec-

tively. For the flow past a circular cylinder, a separate set of surface points on the cylinder

can be introduced in order to carry out the numerical integration given by Eq. (11). The

values of the pressure and each of the six components of the symmetric deviatoric stress

tensor on the surface points can be obtained using a second-order extrapolation scheme

based on the values of p and 7ij at the neighboring fluid lattices. The force exerting on the

boundary 0_ is computed as

_'_ : [dA _%. {-p[ + pL,[(V'U)+ (V :U)T]}extrapolated . (14)
Joe

9



It is worth commentinghere that for the two-dimensionalflow past a cylinder, nearly half

of the entire codewas takenup by the aboveforceevaluationprocedure.

C Method based on the momentum exchange

In order to employ the momentum exchange method efficiently, two scalar arrays, w(i, j)

and wb(i, j) are introduced. A value of 0 is assigned to w(i, j) for the lattice site (i, j) that

are occupied by fluid; a value of 1 is assigned to w(i,j) for those lattice nodes inside the

solid body. The array wb(i,j) is set to zero everywhere except for those boundary nodes,

xb, where a value of 1 is assigned. For a given nonzero velocity e_, e_ denotes the velocity

in opposite direction, i.e., e_ = -e_ (see Fig. 2). For a given boundary node xb inside the

solid region with wb(i,j) = 1 and w(i,j) = 1, the momentum exchange with all possible

neighboring fluid nodes over a time step 5t = 1 is

a#0

Simply summing the contribution over all boundary nodes xb belonging to the body, the

total force (acted by the solid body on the fluid) is obtained as

EF

all _b a:_0

In the momentum exchange method the force F is evaluated after the collision step is

carried out and the value of ]_ at boundary given by Eq. (7) has been evaluated. The

momentum exchange occurs during the subsequent streaming step when ]_(xb, t + St) and

]_(x I, t+St) move to xf and xb, respectively. As mentioned in the introductory section, the

effect of variable A is not explicitly included, but it is implicitly taken into account in the

determination of/a(xb, t+St). The applicability of Eq. (15) will be examined and validated.

Clearly, the force is proportional to tl_e number of boundary nodes xb in the above formula

of F and the number of the boundary nodes increase linearly with the size of the body in

a two-dimensional flow. However, since the force is normalized by pU2r in the formula for

CD in two-dimensions [see Eq. (24)], the drag coefficient CD should be independent of r.

10



III. RESULTS AND DISCUSSIONS

For straight walls, there is no doubt that Eq. (11) together with the equation of state

for pressure and Eq. (13) for _-ij gives accurate result for the force provided that f_'s are

accurately computed. To demonstrate the correctness of Eq. (15) based on the momentum

exchange for an arbitrary A, we first consider the pressure driven channel flow (see Fig. 4) for

which exact solutions for the velocity and stresses are known. The second case considered is

the two-dimensional flow past a column of circular cylinders at Reynolds number Re = 100

and H/r = 20, where H is the distance between the centers of two adjacent cylinders. The

values of the drag computed using the two force evaluation methods are then compared with

the result of Fornberg [26]. The dependence of the drag on the radius r in the momentum

exchange method is examined to assess the reliability of this method. The third case is the

two-dimensional flow over a circular cylinder that is asymmetrically placed in a channel at

Re = 100 (with vortex shedding). The time dependence of the drag and lift coefficients is

compared with results in literature.

We also consider two cases of three-dimensional flow. The first case is the pressure driven

flow in a circular pipe for which the exact solutions for both the velocity profile and wall

shear stresses are known. The assessment for the momentum exchange method for three-

dimensional flows will be made first in this case. Finally, the momentum exchange method

will be evaluated by considering the drag on a sphere due _o a uniform flow over a sphere

in a finite domain. The details for the flow field computation can be found in Ref. [1, 2].

A Two-dimensional pressure-driven channel flow

In the case of the channel flow, the force on the top wall (y = H) at a given location x

(i = N_/2 + 1, say) can be evaluated using the momentum exchange method as follows. The

wall is located between j = Ny and Ny - 1 (Fig. 4). The x and y components of the force

11



on the fluid at the top wall near the ith node are

Fx = []6(i, J) + ]2(i- 1,j - 1)] e6,x + []s(i,j) +.L(i + 1,j - 1)] e8,_ (16a)

Fy = [_(i,j) + ]2(i- 1,j - 1)] e6,_ + [/s(i, J) + ]4(i + 1,j - 1)] es,y

+[fT(i,j) + fa(i,j - 1)] eT,y, (16b)

where e_,j denotes the jth Cartesian component of velocity e_. Since 5x = 1, Fx and Fy are,

effectively, the total shear and normal stresses, a_y and ayy, which include the pressure and

the deviatoric stresses, on the fluid element at y = H.

Based on Eq. (13), the deviatoric component of the fluid shear stresses at j = Ny - 1

(or y = Ny - 3 + A) and Ny - 2 (or y = ivy - 4 + A) can be exactly evaluated based on

the non-equilibrium part of the distribution functions in the flow field if they are correctly

given. A linear extrapolation of the deviatoric shear stresses to y = H = N_ - 3 + 2A yields

__(neq) = __y(j = Ny - 1) + A[T_y(j = Ny - 1)- _-_(j = ivy - 2)], (17)
Xy_W

where the superscript "(neq)" denotes the value computed from f(neq) the subscript w refers

T(neq)to the value at the wall. The deviatoric normal stress, yy:w, can be similarly computed.

In a fully developed channel flow, the normal component of the deviatoric stress %y(y) is

expected to be zero while the total normal stress _yy(y) is equal to the negative pressure

(-p). It needs to be pointed out that this method of evaluating 7(neq)xy,_given by Eq. (17) for

two-dimensional channel flow is equivalent to the method of the surface stress integration

based on the extrapolated pressure and the deviatoric stresses on the solid wall except that

no numerical integration on the solid surface is needed.

After the velocity profile u_(y) is obtained from f_, the shear stress _-_y on the wall can

also be calculated using the near wall velocity profile as,

du_l (2 + A)[0- u_(j = Ny - 1)]
pu-- = pu

dy y=H (1 + A) A

A

-pu (1 + A) [u_(j = Ny - 1) - ux(j = Ny - 2)]. (18)

In the above, a linear extrapolation is employed to evaluate the velocity derivative d_--u-_ly=Hdr

12



at the wall. Finally, the exact solution for the fluid shearstresson the wall (y = H) is

Texact 1 dp
Y'_ 2 _xx H, g = N_ - 3 + 2A (19)

based on the parabolic velocity profile or simple control volume analysis. This exact result

can be used to assess the accuracy of the aforementioned methods for the force evaluation.

In the LBE simulations, the pressure gradient is enforced through the addition of an

equivalent body force after the collision step [2, 23]. While the velocity field given by the

LBE solution can be unique, the pressure field [thus the density field p(x, y)] can only be

unique up to an arbitrary constant. In view of Eq. (18), it is difficult to compare the stresses

for different cases if p(i, j) converges to different values in each case. To circumvent this

difficulty, the density field in the channel flow simulation is normalized by p(i = 2, j = Ny/2)

at every time step. This normalization procedure results in p(x, y) = 1 throughout the entire

computational domain. It is also applied to the three-dimensional flow in a circular pipe.

Table I compares the numerical values of the shear stress for a typical case (Ny = 35,

_exact (19), Fxdp/dx = -10 -6 in the lattice units, and _- = 0.6) based on: Jxy,_ given by Eq.

given by Eq. (16a), T(neq)xy,_given by Eq. (17), and pu _-_ly=n given by Eq. (18). Also listed

is the comparison between Fy given by Eq. (16b) and -p. All computations are carried out

with double precision accuracy.

_exact for all values of A. Closer examination of theIt is noted that __(neq),_y,_is identical to _xy,_o

shear stress profile using Eq. (13) across the channel reveals that T(neq)(y)_y,_is also equal to the

exact shear stress profile _exact _orj_y _y), which is linear, despite the errors in the velocity profile

u_(y) for all values of A. A linear extrapolation, Eq. (17), for a linear profile therefore gives

the exact wall shear stress. Thus, the exactness of _:(.eq)_y,_in the LBE simulation of channel

flow indicates the reliability of the LBE solution for the stress field _-_j_'q)(x, y) by using

Eq. (13). However, as Fig. 3 indicates, the accuracy of the integrating ___jneq)(X,y) to obtain

the fluid dynamic force in nontrivial geometries is not clear; this will be further investigated

in the following sections.

For 0 < A < 1, the normal force Fy given by Eq. (16b) based on the momentum exchange

method agrees exactly with the pressure on the wall. This is a rather special quantity
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sincedeviatoric componentof the force is identically zero. Nevertheless,the method of the

momentumexchangedoesgive a reliablevalue for the normal stress.

For the shear (tangential) force, it is observedfrom Table I that for fixed dp/dx, F,:

does not change as A increases from 0.01 to 0.99. On the other hand, the exact result

_-ex_ct : _:Tv - 3 + 2A), increases linearly with A. Further computations were carried
y,w ---- 2 dx _"_ "y

out over a range of ivy (= 35, 67, 99, and 131) and T (= 0.505, 0.51, 0.52, 0.6, 0.7, 0.8, 0.9,

1.0, 1.2, 1.4, and 1.6). The results indicate that the momentum exchange method gives the

shear stress on the top wall as

Fx- 2dx Ny-3+ .

That is, Fx is independent of _- and A. The error in Fx is zero when A = 1/3. The absolute

4 for Fx. Althougherror attains the maximum when _ = 1 which gives the relative error of _-#

the frequently used momentum exchange method is a natural choice for the force evaluation

in conjunction with the bounce-back boundary condition for £x = 1/2, one must be aware

of that this method is not exact and the error in the force evaluation using the momentum

exchange method depends on A and the resolution.

The error in Fx is due to the fact that the derivatives of the velocity field are not considered

in the boundary conditions. This can be understood by analyzing Eq. (16a). At the steady

state, and with the approximation that

ia _ f(eq) _+_ f(1)= f(eq)_ _

Equation (16a) at the top wall becomes

1 3

7w_P-_(e_. V)(e_. u), (21)

3

Fx ,_ 2w2p-_e2 . (ubf + u: - 2uw) , (22)

where the substitution of Eq. (10) for ]6 and fs has been made. The only term in the

above equation which has A dependence is ub:. When 0 < A 1/2, Fx is independent of

A, and when 1/2 < A < 1, Fz weakly depends on A because u_ = 0 in this case [see

Eqs. (9)]. In the case where F_ is obtained by summing over a set of symmetric lattice

points, cancellations in the summation may further weaken the dependence of F_ on A.
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Table I alsoshowsthat for the shearstressbasedon taking the derivative of the velocity,

the lossof accuracyis quite significant for small valuesof A (_<0.05) for _-= 0.6. For other

values of A (> 0.3), the accuracy is comparable with that of Fx. However, as shown in

Fig. 5(a), the accuracy of puA-d__4__lY=Hd_based on the near-wall velocity derivative deteriorates

as the relaxation time _- increases (from 0.51 to 1.6). To see the cause of the increasing error

in pu dy y=g, Fig. 5(b) shows dimensionless wall velocity, u_,/uc, obtained by a three-point

second-order Lagrangian extrapolation of the near wall velocity ux(y) as a function of 7-.

The increasing slip velocity u_ on the wall with the increasing relaxation time T was also

observed in Ref. [16]. It is the result of increasing particle mean free path that causes the

deviation of the kinetic solution from the hydrodynamic solution. It is clear that the poor

performance of fll]_-Iy= H is associated with the increasing error in the near wall velocity

profile as _- increases. Since the stress tensor "rij can be calculated directly from fa [see

Eq. (13)] without the need for directly computing velocity derivatives, the force evaluation

method based on the evaluation of the velocity gradient in the form of Eq. (12) is not

recommended.

B Steady uniform flow over a column of cylinders

For a uniform flow over a column of circular cylinders of radius r and center-to-center

distance H (see the left part of Fig. 9 for illustration), symmetry conditions for f_'s are

imposed at y = +H/2. Most of the details of flow field simulation can be found in Ref. [1].

The Reynolds number is defined by the diameter of the cylinder d as Re = Ud/u, where U

is the uniform velocity in the inlet. It must be noted that for a consistent determination of

the force, the upstream boundary must be placed far upstream. A shorter distance between

the cylinder and the boundary will result in higher drag. In this study, it is placed at about

20 radii to the left of the center of the cylinder. Reducing the distance between boundary

and the cylinder to 12.5 radii while keeping the rest of the computational parameters fixed

would increase the drag coefficient by about 1.8% at Re = 100. The downstream boundary

is located about 25 - 30 radii behind the cylinder to allow sufficient wake development. The
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simulation is terminated when the following criterion basedon the relative L2-norm error in

the fluid region _t is satisfied,

i t + 1)- u( ,,t)ll =
E2 = ,_,en < e. (23)

Ilu( . t + 1)112 -
m_E_

In this case, e = 10 -6 WaS chosen for both Re = 10 and 100.

aS

Following Fornberg [26], the drag coefficient over a circular cylinder of radius r is defined

CD-- levi (24)
pU2r •

Figure 6(a) compares CD obtained from: momentum exchange method, surface stress in-

tegration, and finite difference result of Fornberg [26] using a vorticity-stream function for-

mulation at Re = 100, H/r = 20, and radius r ranging from 2.8 to 13.2. For r > 8, both

methods of momentum exchange and the stress integration give satisfactory results for Co

in comparison with the value of 1.248 given in Ref. [26]. This adds credence to the validity

of Eq. (15) for evaluating the total force on a body. The values of Co from the momentum

exchange method have a little less variation than that from the stress integration. Accepting

an error of less than 5%, the reliable data for Co can be obtained, using the momentum

exchange method, for r > 5. That is, 10 lattices cross the diameter of the cylinder are

necessary to obtain reliable values of the force. This is consistent with the finding by Ladd

[15]. In the range of 5 < r < 7, the stress integration method gives more scattered result

than the method of momentum exchange. For smaller radius, i.e., coarser lattice resolution,

while both methods give poor results (due to insufficient resolution), the stress integration

yields much larger errors.

Figure 6(b) compares Co obtained from the methods of momentum exchange and the

stress integration for Re = 10. The momentum exchange method seems to gives a converged

result at larger r (> 8). Based on the data for r > 8, an average values of C O _ 3.356 is

obtained. In contrast, the stress integration method has a larger scattering than the large

r result from the momentum exchange method even for r "> 8. Averaging over the results
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for r > 8, the stress integration gives CD _ 3.319. The difference between converged

results of two methods is about 1%. For r less than or around 5, the scattering in CD

from the stress integration method is much larger than that in the momentum exchange

method. The conclusions from the comparisons in Fig. 6 are as follows: (i) both methods

for force evaluation can give accurate results; (ii) the momentum exchange method gives

more consistent drag; and (iii) in the range of 10 < Re < 100, a resolution of 10 lattices

across the diameter of the cylinder are needed in order to obtain consistent and reliable drag

values. In other words, the lattice (grid) Reynolds number Re" should be less than 10 in the

calculations.

In the above results presented in Figs. 6(a) and 6(b), the center of the cylinder is placed

on a lattice grid thus the computational mesh is symmetric with respect to the geometry

of the cylinder. To test the effect of the mesh symmetry on the accuracy of the force

evaluation, the calculation of the flow at Re = 10 is repeated with different values of the

cylinder center offset Ax in x direction, or Ay in y direction. The radius of the cylinder is

deliberately chosen to be only 6.4 lattice grids. In order to preserve the mirror symmetry of

the flow in y-direction, we use different boundary conditions for upper and lower boundaries

(at y = =i=H). For Ax = 0 while varying Ay, we use the periodic boundary conditions at

y = +H. For Ay = 0 while varying A_, we use the symmetric boundary conditions. The

results of the drag coefficient Co are presented in Table II. The variation of CD due to the

change of the center of cylinder offset from a grid point is less than 1%. We notice that

the variation in Co due to Ay is larger than that due to A_. This is precisely because of

the asymmetry of the mesh due to Ay -_ 0, while the offset in x-direction maintains the

flow symmetry in y-direction. This asymmetry due to A_ ¢ 0 results in the change of the

lift coefficient from O(10 -12 ) to O(10-3). It is our observation that the accuracy of the

force evaluation schemes used here is dictated by that of the boundary conditions at the

solid walls. The error due to the symmetry of the computational mesh with respect to the

geometry of an object is well bounded. This is also observed in other independent studies

[27, 28].

It is worth noting that the wall shear stress in the channel flow obtained by using the
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method of momentum exchangehas a relative error proportional to the resolution across

the channel. For a resolution of 10 - 20 lattices acrossthe diameter consideredhere, the

relative error in the drag appears, however, smaller than in the channel flow case. At

Re = 100,with r > 10, the average value of the drag obtained by using the method of

momentum method has a 1.7% relative error comparing with Fornberg's data [26]. If the

boundary layer thickness is estimated roughly to be 3 × 2r/v/R-e _ 6, there are only about

6 lattices across the boundary layer over which the velocity profile changes substantially.

Based on the insight from the channel flow result, it is possible that the deviatoric shear

stresses on the surface of the cylinder that are effectively incorporated in the method of

momentum exchange suffer comparable level of error as in the channel flow. The effective

error cancellation over the entire surface of the body may have contributed to the good

convergence behavior in the drag shown in Figs. 6(a) and 6(b).

C Flow over an asymmetrically placed circular cylinder in channel with vortex shed-

ding

Sch_fer and Turek [29] reported a set of benchmark results for a laminar flow over a

circular cylinder of radius r that is asymmetrically placed inside a channel. In the present

study, r = 12.8 is used and the center of the cylinder coincides with a grid point. The

distance from the center of the cylinder to the upper wall and lower wall is h+ = 4.2r and

h_ = 4.0r, respectively. This results in A+ = 0.76 for the upper wall and A_ ---- 0.2 for

the lower wall, respectively. The channel inlet has a parabolic profile and it is placed at 4

radii upstream of the cylinder center according to the specification of the benchmark test

[29]. This results in A = 0.2 for the inlet boundary. A zeroth-order extrapolation for f_ is

used at the exit boundary which is located 40 radii downstream of the cylinder center. Thus

there are a total of 564 × 105 square lattices in the flow field. For Re = 2rO/_ = 100 based

on the average inlet velocity _', the use of relaxation time 7 = 0.55 requires/) = 0.095.

At this Reynolds number, the flow becomes unsteady and periodic vortex shedding is
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observed.Figures 7(a) and 7(b) comparethe lift coefficient

Fy
CL = p_,2r

and the drag coefficient Co [see Eq. (24)] with the benchmark results in Ref. [29]. We first

note that the present numerical value of Strouhal number St = 2r/_JT is 0.300, where T is

the period of the lift curve. This agrees very well with the range of CL values (0.2995 - 0.305)

given in Ref. [29]. We note that the difference in CL(t) between the momentum exchange

method and the surface stress integration method is indiscernible graphically. For the drag

coefficient Co(t), it is interesting to note that although there is about 0.25% difference

between the results given by momentum exchange method and the surface stress integration

method, both methods of force evaluation give two peaks in the Co(t) curves. Physically,

these two peaks in CD (t) curve correspond to the existence of a weaker vortex and a stronger

vortex alternately shed behind the cylinder. The difference in the strength of the vortices

results from the difference: h+/r = 4.2 and h_/r = 4.0 in the passages between the cylinder

and the channel walls. There is no report on the occurrence of these two peaks in Ref. [29].

Instead, a range of the maximum Co (from 3.22 to 3.24) by different researchers was given.

The present value of the higher peak is well within the range. A further refined computation

of the present problem using a multi-block procedure [30] with r = 40 in the fine grid region

yield nearly the same results for Co(t) and Cn(t).

D Pressure driven flow in a circular pipe

The steady state flow field was obtained by using D3Q19 model with 7- = 0.52 [2]. Eq. (15)

is used to evaluate the force on the boundary points along the circumference of the pipe over

a distance of one lattice in the axial direction. The resulting axial force, F_, is, equivalently,

the force given by _-w(27rr_) where % is the wall shear stress and r is the pipe radius. For

a fully developed flow inside a circular pipe, the exact fluid shear stress at the pipe wall is

given by

dp (25)_exact (271-r) _- 7rT 2 --Tw dx"
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Weexaminethe normalized axial force,

Fx (26)
7/=_.

dx

Figure 8 shows the normalized coefficient r/over a range of .r: 3.5 - 23.5. Except for r _< 5,

_/is rather close to 1. It was noticed in Ref. [2] that the accuracy of LBE solution for the

pipe flow is not as good as that fox" the two-dimensional channel flow due to the distribution

of values of A around the pipe. The accuracy of the drag is dictated by the accuracy of the

flow field if the force evaluation method is exact. For the pipe flow, the error in Fx results

from the inaccuracy in the flow field and the errors in the force evaluation scheme based on

momentum exchange (as seen in the previous section for the two-dimensional channel flow

case). For r > 5, the largest error in F_ is about 3.5% and it occurs at r = 15.5. Again, there

is no systematic error in F_. Given the complexity of the boundary in this three-dimensional

flow, the results shown in Fig. 8 are satisfactory in the sense that it adds further credence

to the momentum exchange method for force evaluation.

E Steady uniform flow over a sphere

To limit the computational effort, a finite domain of -HI2 <_ y <_ HI2 and -HI2 <_

z <_ HI2, with H/r = 10 is used to compute the flow past a sphere of radius r (see Fig. 9).

Two cases are considered: (a) the flow past a single sphere, and (b) the flow over an two-

dimensional array of spheres (all located at x = 0) with the center of the spheres forming

square lattices. In the former case, the boundary conditions at jy = 1 (y = H/2 corresponds

to jy = 2) for f_'s are given by the following linear extrapolation

A(jx, l,jz) = 2A(j_,2,jz)- f_,(j_3,jz). (27)

The velocity at jy = 2 is set as

u(j_,2,jz) = u(j_,3,jz). (28)

Similar treatment is applied at y = HI2 and z = +HI2. In the latter case, symmetry

conditions are posed on f_'s at jy = 1 by using the values of f_'s at Ju = 3 (see Ref. [1] for
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the two-dimensionalcase). At the inlet, a uniform velocity profile is imposedat jx = 1.5

(half way between the first and second lattices). The upstream boundary is located at 7.5

radii to the left of the sphere center in all simulations.

For flow over a sphere, the drag coefficient is often expressed as

rx _24¢ Fx
CD -- ½PU2----r 2 Re ' ¢- 6:_rUp_ '

(29)

where ¢ accounts for the non-Stokesian effect of the drag. For two types of the boundary

conditions at (y = +H/2 and z = +H/2), ¢_ denotes the non-Stokesian correction for the

case where the symmetry conditions are imposed at (y = ::kH/2 and z = +H/2) and ¢oo

denotes the results for the case where the extrapolation for f_ is used at (y = :kH/2 and

z = +HI2) in order to simulate the unbounded flow.

Figure 10(a) shows the non-Stokesian coefficient ¢oo for r = 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 5.1,

5.2, 5.4, 5.6 and 5.8, for H/r = 10 at Re = 10. The relaxation time is 7- = 0.7. With this

range of r, the number of the boundary nodes on the surface of the sphere increases roughly

by a factor of (5.8/3) 2 _ 3.74; the actual counts of the boundary nodes xb gives a ratio

2370/546 = 4.35. The largest difference is 1.9% between r = 3.0 and r = 3.2 which have

the least resolution in the cases investigated. For a uniform flow over an unbounded sphere,

an independent computation using finite difference method based on the vorticity-stream

function formulation with high resolution gives a drag coe_cient ¢ _ 1.7986 at Re = 10.

The largest difference between this result and the LBE results is 1.36% at r = 3.2. If the

LBE data for the drag is averaged over the range of r, one obtains ¢ ._ 1.8086 which differs

from 1.7986 by 0.54%. Hence, the LBE solutions based on 3.0 < r < 5.8 give quite consistent

drag force. Figure 10(b) shows the non-Stokesian correction factor Cs for a uniform flow

over a planar array of spheres for 3.0 < r < 5.8 and H/r = 10, at Re = 10. It is important

to note that with the improvement of the surface resolution by a factor of 4.35, there is little

systematic variation in Cs(r). The largest deviation from the average value, ¢_ _ 1.963, is

1.1% at r = 5.0. It is clear that the LBE solution gives reliable fluid dynamic force on a

sphere at r .._ 3.5 for a moderate value of Re. The set of data for ¢_ is inherently more

consistent than that for ¢oo since the symmetry boundary condition can be exactly specified
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at y = +H/2 and z = +H/2, while the extrapolation conditions given by Eqs. (27) and (28)

do not guarantee the free stream condition at y = +H/2 and z = +H/2. Yet, both ¢o0 and

¢s exhibit remarkable self-consistency from coarse to not-so-coarse resolutions.

IV. CONCLUSIONS

Two methods for evaluating the fluid force in conjunction with the method of lattice

Boltzmann equation for solving fluid flows involving curved geometry have been examined.

The momentum exchange method is very simple to implement. It is shown in the channel

flow simulation that momentum exchange method is not an exact method. The error in the

wall shear stress is inversely proportional to the resolution. In two- and three-dimensional

flows over a bluff body, it can give accurate drag value when there are at least 10 lattices

across the body at Re _ 100. The method of integrating the stresses on the surface of the

body gives similar result when there is sufficient resolution but a much larger uncertainty

exists when the resolution is limited in comparison with the method of momentum exchange.

In addition, this method requires considerably more efforts in implementing the extrapo-

lation and integration on the body surface in comparison with the method of momentum

exchange. The method of momentum exchange is thus recommended for force evaluation

on curved bodies.

This work is supported by NASA Langley Research Center. R. Mei also acknowledges

partial support of the Engineering Research Center (El[C) for Particle Science and Tech-
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APPENDIX A: LBE MODELS IN TWO AND THREE DIMENSIONS

The nine-velocity (or 9-bit) LBE model on a two-dimensional square lattice, denoted as

the D2Q9 model, has been widely used for simulations of two-dimensional flows. For three-

dimensional flows, there are several cubic lattice models, such as the fifteen-velocity (D3Q15),

nineteen-velocity (D3Q19), and twenty-seven-velocity (D3Q27) models, which have been
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usedin the literature [12]. All thesemodelshave a rest particle (with zerovelocity) in the

discretizedvelocity set {e_lc_= 0, 1, ..., , (b - 1)}. For athermal fluids, the equilibrium

distributions for the D2Q9,D3Q15,D3Q19,and D3Q27modelsareall of the following form

[8, 9]

(At)f(eq) : W{2p 1 + C3----_-(e{2 " U)+ _-_(e a " U) 2- 2C 2 j ,

where w{2 is a weighting factor and e_ is a discrete velocity, c - 6x/St is the unit speed, and

6x and 5t are the lattice constant and the time step, respectively. The discrete velocities for

the D2Q9 models are

(0, 0), a = 0

(±1, 0)c, (0, +1)c, a = 1,3, 5, 7

(+l, +1)c, a = 2, 4, 6, 8,

and the values of the weighting factor w{2 are

4

W_ = 1

a=O

a = 1, 3, 5, 7

a = 2, 4, 6, 8.

For the D3Q19 model, the discrete velocities are

e_

(0, 0), a = 0

(±l, 0, 0)c, (0, +1, 0)c, (0, 0, +1)_, _= 1-6

(+l, il, 0) c, (0, 4-1, ±1) c, (±1, 0, ±1)c, a=7-18,

and the weighting factor w{2 is given by [9]

W{2

_, a=O

= , a=l-6

3_, a = 7-18.

The discrete velocity sets {ea} for the D2Q9 and D3Q19 models are shown in Fig. 1.

(A2)

(A3)

(A4)

(A5)

The density and velocity can be computed from f_:

{2 {2

pU = E e{2f{2 = E e{2_q)"

Ot {2

(A6a)

(A6b)
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The speedof soundof the aboveLBE models is

1
Cs = --_C

and the equation of state is that of an ideal gas such that

2 (A7)p=csp.

The viscosity of the fluid is

I/ : C_A

for the discrete velocity model of Eq. (2). It should be noted that the equilibrium dis-

tribution function f(eq) is in fact a Taylor series expansion of the Maxwellian f(0) [8, 9].

This approximation of f(eq) in algebraic form by making the LBE method valid only in the

incompressible flow limit u/c -+ O.

Equation (2) is often discretized in space x and time t into the lattice Boltzmann equation

fa(xi + ea6t, t + 6t) - f_(xi, t) = -l[f_(xi, t) - f(eq)(xi, t)], (A8)

where T = A/at. For this LBGK model [3, 4], the viscosity' in the Navier-Stokes equation

derived from the above lattice Boltzmann equation is

l/ : T -- Cs

The -1/2 correction in the above formula for _ comes from the second order derivatives of

f_ when f,(xi + ejt, t + 6t) in Eq. (AS) is expanded in a Taylor series in u. This correc-

tion in v makes the lattice Boltzmann method formally a second order method for solving

incompressible flows [9]. Obviously, the physical and computational stabilities require that

7- > 1/2.
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FIG. 1: Discrete velocity set {e_}. (top) Two-dimensional nine-velocity (D2Q9) model.

(bottom) Three-dimensional nineteen-velocity (D3Q19)model.
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FIG. 2: Layout of the regularly spaced lattices and curved wall boundary. The circles (o),

discs (*), shaded discs (.), and diamonds (O) denote fluid nodes, boundary locations (xw),

solid nodes which are also boundary nodes (xb) inside solid, and solid nodes, respectively.
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FIG. 3: Distribution of the pressure coefficient Cp on the surface of a 2D circular cylinder

of radius r = 6.6, and center-to-center distance H/r = 10. The stanation point is located at

= 180 °. The result is obtained with _- = 0.6 and Re = 40.
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FIG. 5: The LBE simulations of the channel flow, with A = 0.2, 1/3, 0.5, and 0.7. The

pressure drop is cgxp = -1.0 × 10 -8 in lattice units. (a) Ratio between the wall force,

puO_,u_Iy=H, evaluated by using Eq. (18), and the exact value -i_,w-exact= -HO=p/2, given by

Eq. (19) as a function of w. (b) Normalized wall slip velocity uw/u_ as a function of T.
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_exact neq _IA -"xy,w x 105 -Fxx 105 -_xy,w x l0 s -pu y=H X 105 -Fy p

0.01 1.601 1.6333 1.6010 3.5294 0.3333 0.3333

0.02 1.602 1.6333 1.6020 2.5555 0.3333 0.3333

0.03 1.603 1.6333 1.6030 2.2309 0.3333 0.3333

0.04 1.604 1.6333 1.6040 2.0685 0.3333 0.3333

0.05 1.605 1.6333 1.6050 1.9710 0.3333 0.3333

0.1 1.610 1.6333 1.6100 1.7760 0.3333 0.3333

0.2 1.620 1.6333 1.6200 1.6781 0.3333 0.3333

0.25 1.625 1.6333 1.6250 1.6583 0.3333 0.3333

0.3 1.630 1.6333 1.6300 1.6451 0.3333 0.3333

0.3333 1.633 1.6333 1.6330 1.6385 0.3333 0.3333

0.35 1.635 1.6333 1.6350 1.6357 0.3333 0.3333

0.4 1.640 1.6333 1.6400 1.6285 0.3333 0.3333

0.5 1.650 1.6333 1.6500 1.6184 0.3333 0.3333

0.6 1.660 1.6333 1.6600 1.6214 0.3333 0.3333

0.7 1.670 1.6333 1.6700 1.6244 0.3333 0.3333

0.8 1.680 1.6333 1.6800 1.6274 0.3333 0.3333

0.9 1.690 1.6333 1.6900 1.6305 0.3333 0.3333

0.95 1.695 1.6333 1.6950 1.6321 0.3333 0.3333

0.99 1.699 1.6333 1.6990 1.6335 0.3333 0.3333

TABLE I: Comparison of fluid stresses at y = H in a two-dimensional pressure driven

channel flow with dp/dx = -1.0 x 10 -6 in the lattice units, Ny = 35 and _- = 0.6 as a

function of A. Column 2, -7_,_ t given by Eq. (19); Column 3, -Fx given by Eq. (16a);

Column 4, -'%y,w-neqgiven by Eq. (17); Column 5, --pud"--_[y=Hdy Eq. (18); Column 6, -Fy given

by Eq. (16b); Column 7, pressure p obtained in the simulation.
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A_ = 0, periodicBC at y = +H

Ay 0 0.2 0.4 0.6 0.8

CD 3.3780 3.3755 3.3576 3.3636 3.3755

Ay = 0, symmetric BC in y = +H

Ax 0 0.2 0.4 0.6 0.8

CD 3.3745 3.3844 3.3847 3.3838 3.3860

TABLE II: The effect of the symmetry of computational mesh on the force evaluation for the

steady uniform flow over a column of cylinders. The Reynolds number Re = 10 (7- = 0.7),

and the radius of the cylinder r = 6.455. The variation of CD due to the change of the center

of cylinder offset from a grid point is less than 1%.
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ABSTRACT

Compared to Navier-Stokes equation-based approach,
the method of lattice Boltzmann Equation (LBE) offers
an alternate treatment for fluid dynamics. However the

LBE method often employs certain regular lattices to
maintain a compact and efficient computational

procedure. This limitation makes it difficult to perform
flow simulations when there is a need for high

resolution near the body and/or there is a far-field

boundary. To resolve these difficulties, a multi-block

method is developed. In this method, the flow field is
divided into blocks. In each block, the grid is uniform

and the grid size is chosen according to the desired

resolution. In this paper, an accurate interface treatment
between neighboring blocks is derived to ensure the

continuity of mass, momentum, and stresses across the
interface. Several test cases are employed to

demonstrate that the present multi-block method can

greatly improve the accuracy and computational
efficiency.

1. BACKGROUND OF THE LATTICE

BOLTZMANN METHOD

Recently, there has been much progress in

developing and employing the method of the lattice
Boltzmann equation (LBE) [1-3] as an alternative, non-
traditional computational technique for solving

complex fluid dynamic systems [4-5]. In an NS
equation-based macroscopic method for computational

fluid dynamics (CFD), the macroscopic variables of
interest, such as velocity u and pressure p, are obtained

by solving the Navier-Stokes (NS) equations [6-8]. In
the LBE approach, one solves the kinetic equation for

the particle mass distribution function f(x,_,,t) and the

macroscopic quantities (such as mass density p and

momentum density pu) can then be obtained by
evaluating the hydrodynamic moments of the

distribution functionf.

A popular kinetic model is the Boltzmann equation

** Graduate student * Associate professor, f Professor and Chair,

Associate Fellow AIAA.
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with the single relaxation time approximation [9]:

_f + _.Vf =- l(f_f(o)) (1)
at ,t

where _ is the particle velocity, p) is the equilibrium
distribution function (the Maxwell-Boltzmann

distribution function), and 3, is the relaxation time. The

mass density p and momentum density ,oft are the

hydrodynamic moments of the distribution functionf.
To solve for f numerically, Eq. (I) is first

discretized in the velocity space _ using a finite set of

velocities {_} without affecting the conservation laws

[5, 9-i1],

afa "__a "Vfa =-_(fa _ f(eq)) (2)at

In the above, fa(X, t) -f(x, _a, t) is the distribution

function associated with the direction _a and f(eq) is

equilibrium distribution function of the o_-th discrete
velocity. The 9-bit (or 9-velocity) square lattice model,
which is also called Q9D2 model (Fig. 1) has been

widely used for simulating 2-D flows. For Q9D2

model, we use ea to denote the discrete velocity set and
we have

e0 = 0,

e,_= (cos((o - 1)rr / 4), sin((a - 1)rt / 4))

for c_=l, 3, 5, 7,

e_ _(cos((a' - 1)rt / 4), sin((ct - 1);r / 4))

for o,=2, 4, 6, 8 (3)

where c = 8xlSt, 8x and 8t are the lattice constant and

the time step size, respectively. The equilibrium
distributions for Q9D2 model (as well as for some of

the 3-D lattice models) are in the form of

f_0_ = pw_ [1+__2 (% .u)2+

9 (%.u)2_2_(u.u)21 (4)
2c 4

where w_ is the weighting factor given by

4/9, tz = 0

wa= 1 1/9, cr = 1,3,5,7 (5)
|I / 36, ct = 2,4,6,8.

With the discretized velocity space, the density and
momentum flux can be evaluated as

8 8 f(eq)P = E f_ = E (6a)
k=0 k=0

and
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8 8

pu Y.eaf a _ _(eq)= = Lea/de (6b)
k =l k=l

The speed of sound of this model is q =c/4r3 and the

equation of state is that of an ideal gas,

p = ,Oc_ (7)

Equation (2) can be further discretized in space and
time. The completely discretized form of Eq. (1), with

the time step 8t and space step e,_', is:

fa(xi + e_Yt, t + &) - f_(xi, t)=

- i--[fa(xi,t)- f(eq)(xi,t)] (8)

where _-=A/St, and xi is a point in the discretized
physical space. The above equation is the lattice

Boltzmann equation [1-3] with Bhatnagar-Gross-Krook
(BGK) approximation [9]. The viscosity in the NS

equation derived from Eq. (8) is

v' = (2r- 1)cs_ (9)

This choice for the viscosity makes formally the LBGK
scheme a second order method for solving

incompressible flows [10.11]. The positivity of the

viscosity requires that .'r> 1/2.Equation (8) can be solved
as:

collision step:

?a(Xi, t)= fa(xi, t) -l[fcr(Xi,t)- f(aeq)(xi, t)] (10a)
2"

streaming step:

f_(x i +e_,_t,t+,_t) = f_(xi,t ) (10b)

where - denotes the post-collision state of the

distribution function. It is noted that the collision step
is completely local and the streaming step takes very

little computational effort. Equation (10) is explicit,
easy to implement, and straightforward to parallelize.

Those inherent advantages of the LBE method
require the use of regular lattice (such as a square lattice

or hexagonal lattice) and that the lattice spacing be
equally distributed. This is in direct contrast to the
many finite difference/volume/element methods in

which body fitted coordinates can be used and the grid
stretching can be easily applied. However, it should be
noted that there has also been growing interest in the

macroscopic method to employ the Cartesian grid for

complex flow problems [12,13]. A challenge of such
Cartesian grid approaches is to offer high resolution

near the body and to place the outer boundary far away

from the body. In order to use the regularly spaced
lattice while developing the capability to place the outer
boundary far away, it is desirable to divide the

computational domain into a number of blocks within
which a fixed, constant lattice spacing can be used and

Eq. (10) is implemented in each block as in the standard
LBE method. Again. such an approach has been

actively employed in the macroscopic methods with
both Cartesian and curvilinear coordinates.

This paper describes a multi-block strategy for the

LBE method. In each block, constant value of 8x=Sy=St

is used. The information exchange on the interface
between the neighboring blocks of different lattice

spacing 8x for the primary variablesf_'s is implemented

to ensure the mass conservation and the continuity of
stresses between blocks. A lid-driven cavity flow is

computed using a single block with uniform grid and
the present multi-block method. The results are

compared with published benchmark results. A channel

flow with a parabolic velocity profile at the inlet over
an asymmetrically placed cylinder at Re=100 (based on

the average incoming velocity) is computed next using
the multi-block method. Finally, flow over NACA0012

airfoil at Re=500-5000 is computed. The present study

shows that the multi-block strategy can greatly improve
the computational efficiency of the LBE method.

2. BASICS OF THE MULTI-BLOCK

STRATEGY IN THE LBE METHOD

To illustrate the basic idea, a two-block system (a
coarse and a fine, as shown in Fig. 2) is considered in

the derivation for the interfacial information exchange.

The ratio of the lattice space between the two-grid
system is

m = tYOCc/ CYocf (11)

For a given lattice size 5x, the viscosity of the fluid is

v = (2z'- 1)gxC/6 (12)

In order to keep viscosity v, and thus Re, the same in

the entire flow field involing different lattice sizes, the

relation of relaxation times, "_yon the fine grid and "reon
the coarse gird, must obey the following relation:

i 1

rf =_+m(r c -_) (13)

for c=l. To keep the variables and their derivatives
continuous on interface between two systems of

different grids, consistent, accurate relationship
between the two grid systems must be developed.

The Chapman-Enskog expansion gives,

fa(x,t) =f(eq)(x, t)+ f(1)(X, t)+ ... (14)

(X,t) = -A[_t + _ct "Vfft q ]fa il)

Df (aeq
---A . eq :_ r& (15)

Dt Dt
It is noted that

fa0)= f_-f(aeq)= f(a n°n-eq) (16)

is the non-equilibrium part of the distribution function
based on which the deviatoric stresses are evaluated.

The collision step (Eq. (10a)) gives

2
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.fa(xi,t)= (1-1)fa(xi,t)+ l--f(eq)(xi,t) (17)
T 2-

Sustituting (9) into (17) leads to

fa (xi, t) = (1 - l)f(eq)(xi, t)
2"

+f(ai)(x,, t)+...l+l f2eq)(xi, t)
T

= f(eq)(xi, t)+f-lf(1)(Xi, t)+... (18)
I:

Denoting the coarse-grid results with superscript c and
fine-grid result with superscript f, the post-collision step

gives

fg = s(ae,,c) + 2-c - 1 f(l,c)+ ... (19)
2-<

Similarly,

yay = :(dq,S) + r s -1 f(t,s> + ... (20)
r:

Since the velocity and density must be continuous on

the interface between the two _ids and f(a eq) from

equation (4), it is seen that

f(eq,c) = f(eq,f) (21)

To maintain the continuity in the deviatoric stresses, in
the 2-D case,

-_ - f(aeq) .eaSij )
S 1

r,j = (1- ) _ [fa ](eoieaj -_ect
_'=1

=(1---_T)_lf(an°neq)(e_e_-le_.e=Sij) (22)

it is obvious that one requires

(1-_rc) r(n°n'eq'c) =(1-2-_f ) f(an°n'eq'f)(23)ja,

or

(1- 2_c ) f (al'c) = ( l - 2-_f ) f (al 'f ,

or

2-c f(1,S)f(a l'c) = m-- (24)
2-f

Substituting (24) into (19) one obtains

f:t = f(eq,c) + m r<-1 f(at,: ) +... (25)
r S

Using Eqs. (20, 21), the above becomes

]:: "S
z'f rf - 1

= f(a eq'f) + m 2-c- 1 [faf _ f(aeq,f) ] (26)
"of - 1

In transferring the data from the coarse grids to the fine

grids, one similarly obtains

rf --1 - f(eq,c)]ff = f_aeq,c) _ [fS (27)
m(r c - 1)

On the interface between two blocks, there are m

values of fay needed for each f(a eq'c) and fa' Thus,

spatial and temporal interpolation procedures for the

values of f(eq,c) and fc on the fine-grid lattice is

used to complete the evaluation of fay. There are two

kinds of interpolation are used along the interface:

interpolation in space and interpolation in time. To
eliminate the possibility of asymmetry caused by

interpolations, a symmetric, 4-point spline fitting is

used for spatial interpolation. We found that it is very
important to maintain the symmetry in the interpolation

along the interface. For example if a 3-point Lagrangian

interpolation is used for spatial interpolation, the
asymmetry caused by the interpolation can generate a
lift coefficient of 0.01 for steady flow over cylinder at
Re=20. And if flow is inherently unsteady, this

asymmetry could exaggerate the extent of the
unsteadiness over long time. For temporal interpolation,

a 3-point Lagrangian interpolation is used.

3. RESULTS AND DISCUSSIONS

In all three cases considered here, the boundary

condition for .f_ in the solid region near a wall is

obtained using the formulations given in Ref. [14] for a

curved geometry.

3.1 Lid-driven cavity flow

The lid-drive cavity flow has been extensively used
as a benchmark solution to test the accuracy of a

numerical method in spite of the fact that two singular
points at the upper corner require high resolution to
obtain smooth stresses near the corner points. To assess
the LBE results, the bench mark solution of Ref. [15]

are used for comparison.
The computations are carried out using a single-

block with uniform lattice (129x129) with the walls

placed halfway between lattices and a multi-block

whose layout is shown in Fig. 3. Near the two upper
corner points, the grid resolution is increased by factor

4. The relaxation time is %= 0.56 for coarse-grid block

and xr =0.74 for the fine-grid block. The upper wall
velocity is U=0.0155945. The initial condition for the

density is unity and that for velocity is zero. The
streamlines shown in Fig. 4 are obtained from the single
block solution and the pattern is not discernable from
those of the multi-block solution. The positions of the

centers of the primary vortices are (0.6154, 0.7391) and
(0.6172, 0.7390) for uniform grid and multi-block
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respectively,comparingwiththevalue(0.6172,0.7344)
fromreference[15].Theu-andv-componentsof the
velocityalongthe verticalline andhorizontalline
throughgeometrycenterareshowninFig5aand5b,
respectively,alongwith thebenchmarkresult.It is
seenthatwhilethesingleblockmethodwith129x129
latticescan capturemost of physicalvariables
accurately,themulti-blockmethodgivesmoreaccurate
velocityprofiles.Fig. 5 showsthepressurecontour
from thesingle-blockcomputation.Becauseof the
singularityattheuppercorners,thedensitycontourhas
a verylargeregionof spatialoscillationsdueto the
insufficientresolutionnearthesingularity.Fig.7shows
thepressurecontoursobtainedfromthemulti-block
solution.Significantimprovementin thesmoothnessof
thesolutionforthepressurefieldoverthatofthesingle
blocksolutionisobserved.If thefinestgridsizeisused
in theentireregion,it will requireasignificantlylonger
CPUtimeandmuchlargercomputermemory.

InanNSsolverfor incompressibleflows,because
thedecouplingof thermodynamicpressureandvelocity
field,it iscrucialtomaintainthemassconservationof
theentireflow domain.This issuebecomesmore
criticalwhenthemulti-blockmethodis used[8, 16].
Alsoforincompressibleflows,thepressureisarbitrary
up to a constant.Hencecouplingthepressureterm
whilemaintainingthemassflux conservationis very
important.Generallyspeaking,it isdifficulttomaintain
simultaneouslythecontinuityof mass,momentum,and
stressesacrossthe interfacebetweenneighboring
blocksbecauseinterpolationsareappliedseparately
alongtheinterfaceto evaluatemassflux,momentum
flux, andpressure.Henceit is oftendifficultto use
largegrid sizeratio (m) betweentwo neighboring
blocks.Inmulti-blockLBEmethod,thecontinuitiesof
massandstressesareensuredthroughthe useof
Equations(26-27).Themostimportantpointis that
interpolationsareonlyappliedtof's alongtheinterface
andthisautomaticallyensurestheconsistencyin the
transferofvariousfluxtermsacrosstheinterface.

To validatetheabovearguments,pressure,shear
stress,massflux andmomentumflux neartheblock
interfacesareexaminednext.Fig.8 showsthelocal,
enlargedviewof the pressurecontouraroundan
interfacecornerpointindicatedbythecircleinFig.7.
Clearly,the pressureis rathersmoothacrossthe
interfacewiththecoarse-to-finegridsizeratioof m=4.
Figs. 9-11 show the contours of shear stress, mass flux,

and momentum flux pux z. It is seen that these physical

quantities are all smooth across the interface.

To demonstrate this issue more clearly,

macroscopic physical quantities on one part of the
interface (i.e. line A-B in Fig. 3) are plotted in Figs. 12-
17. After streaming step there is no physical value on

the interface for the fine grid. Here we use second order
extrapolation to get fine grid value on interface. Figs.

12-15 show that mass and momentum flux match very

well between fine- and coarse-grid. Fig. 16 shows the

shear stress. In most part of the interface two sets of
values agree very well with each other. The discrepancy

appears near the upper wall. It is noted that for in the

fine-grid blocks, the top moving wall is located half-
way between two horizontal, fine-grid lattices with a

distance of A t_xf =0.58xf. In the coarse-grid block, the
distance between the wall to the nearest lattice in the

fluid region is AcSxc =0.5_xf =0.58x_ /4=0.125 8xc for

m=4. This mismatch (Ay CAc) will result in different

errors in the boundary condition for jS's. This

subsequently affects the accuracy of the shear stress
near the corner of block and wall. The same problem

also appears in Fig. 17 for pressure.

3,2 Channel flow over an asymmetrical placed

cylinder at Re=lO0

Sch_ifer & Turek [17] reported some benchmark

results for a laminar flow over a circular cylinder

placed asymmetrically inside a channel. The cylinder
has a radius of 0.1m and is asymmetrically placed in the

channel. The center to the upper wall distance is
h+/r=0.21m and the center to the lower wall distance is

hJr=0.20m. In the LBE computation, r=-5 lattice is used

in the coarse grid system and the coarse-to-fine lattice
spacing ratio is m=4. The coarse-grid block has a total

of 220×42 lattices. The relaxation times are _ = 0.52

for and rf =0.58. The channel inlet has a parabolic
velocity and is located about 4 radii upstream of the

cylinder center. A zeroth-order extrapolation for f,_ is
used. The Reynolds number based on the average inlet

velocity and the diameter of the cylinder is Re=100.
At this Reynolds number, the flow becomes

unsteady and periodic vortex shedding is observed. The
numerical value of Strouhal number is 0.300 and it

agrees very well with the value (0.2995-0.305) in

reference [17]. An instantaneous streamline plot is

shown in Fig. 18 after the dynamically periodic solution
is established. The drag and lift are shown in Fig. 19.
The unsteady characteristics of the flow agree well with

the reported results in [17] and comparable with a
similar computation using lattice Boltzmann method
[181.

3.3 Steady flow over NACA0012 airfoil

The NACA 0012 airfoil (Fig. 20) is a popular wing
model, which has been used extensively. Flow fields at

Re=500, 1000, 2000, and 5000 are presently computed

with the multi-block LBE scheme. Fig. 21 shows the
entire computational domain and the schematic of the

multi-block arrangement. There are 150 lattices (grids)
along the chord in the finest block. At the inlet, upper,

4
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and lower boundaries, the equilibrium boundary

condition is used. At the downstream boundary a zeroth
order extrapolation forf's is used.

Fig. 22 shows the density contour, streamlines and
velocity vector of the converged solution at Re=2000

and zero angle of attack. To investigate the effect of

grid resolution, two sets of grid systems are used for the
flow field at Re=500: a fine grid system and a coarse

grid system (with resolution reduced by a factor of 2 in

every block from the fine grid system). Fig. 23 shows
the velocity profiles at (x-x_)/L=0.06 where L is the

chord length and xt.E is the location of the leading edge.
The two sets of velocity profiles agree well with each

other, although the fine grid solution appears to have

smoother u-component velocity profile, as expected.
Fig. 24 compares the drag coefficient Ca between

the present LBE simulation and those calculated from

Xfoil [19]. It can be seen that two sets of results agree

with each other very well for the entire range of
Reynolds numbers investigated in this study.

It is also noted that at Re=500, the present value of
Ca=0.1761 compare very well with the results reported

in Ref. [20]: C,t=0.1762 obtained using a Navier-Stokes
equation-based finite difference method and Ca=0.1717

using Powerflow code developed by EXA Corporation,

which is based on the lattice Boltzmann equation
method. In addition, the present simulation for the
symmetrical flow at Re=500 gives a lift coefficient of

ICLI <6 x 10 "14. Ref. [20] reported CL =l.15X10 7 using

an NS equation-solver and CL =2.27X10 4 using EXA's
Powerflow code. This suggests that the present multi-

block code preserve the symmetry very well.
Finally, it is worth pointing out that there is a

tremendous saving in the computational cost using the
multi-block method in LBE simulations. There are three

different sizes of grids used for the NACA0012 airfoil

simulation. There are 513×65=33345 fine grids, 23300

intermediate grids with m=4, and 37407 coarse grids
(with m=8 in reference to the finest grids). This gives a
total of about 9.4x104 grids in the entire domain. If the

fine grid system is used in the entire domain, the

number of the grids would be N_,XNy= 2849×577~
1.64x105 which is 18 times more than in the multi-

block case. This represents a saving of 18 times in the

memory. Furthermore, since 5t=-Sx=Sy in the LBE

simulation, one time step marching in the coarsest grid
system (m=8) requires 2 sweeps in the intermediate grid

blocks and 8 sweeps in the finest grid blocks. The ratio

of the computational efforts required to carry out a
single-block simulations to that for a multi-block

simulation for a given period of physical time would be

1.64x105x8/(33345x8+23300×2+37407) - 38. Clearly,
more saving can be achieved if more blocks of different
sizes are used.

4. CONCLUDING REMARKS

A multi-block strategy is developed for the lattice
Boltzmann method. The interface condition is derived

to ensure the mass conservation and stress continuity
between neighboring blocks. Favorable computational
results are obtained in three test cases. There is a

significant potential for the multi-block strategy in the

LBE method in the aerodynamics application since the
boundary conditions at infinity and on the wall can both
be reconciled.
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The generalized hydrodynamics (the wave vector dependence of the transport coefficients) of a generalized

lattice Boltzmann equation (LBE) is studied in detail. The generalized lattice Boltzmann equation is con-

structed in moment space rather than in discrete velocity space. The generalized hydrodynamics of the model
is obtained by solving the dispersion equation of the linearized LBE either analytically by using perturbation

technique or numerically. The proposed LBE model has a maximum number of adjustable parameters for the
given set of discrete velocities. Generalized hydrodynamics characterizes dispersion, dissipation (hyperviscosi-

ties), anisotropy, and lack of Galilean invariance of the model, and can be applied to select the values of the
adjustable parameters that optimize the properties of the model. The proposed generalized hydrodynamic

analysis also provides some insights into stability and proper initial conditions for LBE simulations. The
stability properties of some two-dimensional LBE models are analyzed and compared with each other in the

parameter space of the mean streaming velocity and the viscous relaxation time. The procedure described in
this work can be applied to analyze other LBE models. As examples, LBE models with various interpolation

schemes are analyzed. Numerical results on shear flow with an initially discontinuous velocity profile (shock)
with or without a constant streaming velocity are shown to demonstrate the dispersion effects in the LBE

model; the results compare favorably with our theoretical analysis. We also show that whereas linear analysis
of the LBE evolution operator is equivalent to Chapman-Enskog analysis in the long-wavelength limit (wave

vector k= 0), it can also provide results for large values of k. Such results are important for the stability and
other hydrodynamic properties of the LBE method and cannot be obtained through Chapman-Enskog analysis.

PACS number(s): 47.10.+g, 47.11.+j, 05.20.Dd

I. INTRODUCTION

The method of lattice Boltzmann equation (LBE) is an

innovative numerical method based on kinetic theory to

simulate various hydrodynamic systems [1-3] Although the

LBE method was developed only a decade ago, it has at-

tracted significant attention recently [4,5], especially in the

area of complex fluids including multiphase fluids [6-11],

suspensions in fluid [12], and viscoelastic fluids [13,14]. The

lattice Boltzmann equation was introduced to overcome

some serious deficiencies of its historic predecessor: the lat-
tice gas automata (LGA) [15-17]. The lattice Boltzmann

equation circumvents two major shortcomings of the lattice

gas automata: intrinsic noise and limited values of transport
coefficients, both due to the Boolean nature of the LGA

method. However, despite the notable success of the LBE

method in simulating laminar [18-21] and turbulent [22]

flows, understanding of some important theoretical aspects

of the LBE method, such as the stability of the LBE method,

is still lacking. It was only very recently that the formal

connections between the lattice Boltzmann equation and the

continuous Boltzmann equation [23-25] and other kinetic
schemes [26] were established.

*Electronic address: lalleman@asci.fr

tAuthor to whom correspondence should be addressed. Electronic
address: luo@icase.edu

In this work we intend to study two important aspects of

the LBE method which have not been systematically studied
yet: (a) the dispersion effects due to the presence of a lattice

space and (b) conditions for stability. We first construct a
LBE model in moment space based upon the generalized

lattice Boltzmann equation due to d'Humi_res [27]. The pro-
posed model has a maximum number of adjustable param-

eters allowed by the freedom provided by a given discrete
velocity set. These adjustable parameters are used to opti-
mize the properties of the model through a systematic analy-

sis of the gener,'dized hydrodynamics of the model. General-
ized hydrodynamics characterizes dispersion, dissipation

(hyperviscosities), anisotropy, lack of Galilean invariance,
and instability of the LBE models in general. The proposed

generalized hydrodynamic analysis enables us to improve the
properties of the models in genera/. The analysis also pro-

vides us better insights into the conditions under which the
LBE method is applicable and comparable to conventional

computational fluid dynamics techniques.
Furthermore, from a theoretical perspective, we would

like to argue that our approach can circumvent the Chapman-
Enskog analysis to obtain the macroscopic equations from
the LBE models [27,13,14]. The essence of our argument is

that the validity of the Chapman-Enskog analysis is entirely

based upon the fact that there are two disparate spatial scales
in real fluids: the kinetic (mean-free-path) and the hydrody-
namic scales the ratio of which is the Knudsen number.

When the LBE method is used to simulate hydrodynamic
motion over a few lattice spacings, there is no such separa-

1063-651X/2000/61(6)/6546(17)/$15.00 PRE 61 6546 ©2000 The American Physical Society
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tion of thetwo scales.Therefore, the applicability of

Chapman-Enskog analysis to the LBE models might become
dubious. Under the circumstances, analyzing the generalized

hydrodynamics of the model becomes not only appropriate
but also necessary.

It should also be pointed out that there exists previous

work on the generalized hydrodynamics of the LGA models
[28-32] and the LBE models [33]. However, the previous

work only provides analysis on nonhydrodynamic behavior
of the models at finite wavelength, without addressing im-

portant issues such as the instability of the LBE method or

providing insights into constructing better models. In the
present work, by using a model with as many adjustable

parameters as possible, we analyze the generalized hydrody-
namics of the model so that we can identify the causes of

certain nonhydrodynamic behavior, such as anisotropy, and
lack of Galilean invariance, and instability. Therefore, the

analysis shows how to improve the model in a systematic
and coherent fashion.

This paper is organized as follows. Section II gives a brief
introduction to the two-dimensional (20) nine-velocity LBE

model in discrete velocity space. Section III discusses the
generalized LBE model in moment space. Section IV derives

the linearized lattice Boltzmann equation from the general-
ized LBE model. Section V analyzes the hydrodynamic
modes of the linearized evolution operator of the generalized

LBE model, and the generalized hydrodynamics of the

model. The dispersion, dissipation, isotropy, and Galilean
invariance of the model are discussed. The eigenvalue prob-

lem of the linearized evolution operator is solved analytically

and numerically. Section VI analyzes the stability of the
LBE model with Bhatnagar-Gross-Krook (BGK) approxima-

tion, and compares with the stability of the LBE model pre-

sented in this paper. Section VII discusses the correct initial
conditions in the LBE simulations, and presents numerical
tests of shear flows with discontinuities in the initial velocity
profile. Section VIII provides a summary and concludes the
paper. Two appendices provide additional analysis for varia-
tions of the LBE models. Appendix A analyzes a model with

coupling between density p and velocity u, and Appendix B
analyzes the LBE models with various interpolation
schemes.

II. 2I) NINE-VELOCITY LBE MODEL

The guiding principle of the LBE models is to construct a

dynamical system on a simple lattice of high symmetry
(mostly square in 2D and cubic in 3D) involving a number of

quantities that can be interpreted as the single-particle distri-
bution functions of fictitious particles on the links of the
lattice. These quantities then evolve in a discrete time ac-

cording to certain rules that are chosen to attain some desir-

able macroscopic behavior that emerges at scales large rela-
tive to the lattice spacing. One possible "desirable

behavior" is that of a compressible thermal or athermal vis-
cous fluid. (To simplify the analysis, in this work we shall
restrict our analysis to the athermal case.) We shall demon-

strate that the LBE models can satisfactorily mimic the fluid
behavior to an extent that the models are indeed useful in

simulating flows according to the similarity principle of fluid

mechanics. For the sake of simplicity, we confine our discus-
sions here to two-dimensional space. The extension to three-

dimensional space is straightforward, albeit tedious.

A particular two-dimensional LBE model considered in
this work is the nine-velocity model. In this model, space is

discretized into a square lattice, and there are nine discrete
velocities given by

eot _

(0,0),

(cos[ ( cr- i )_r/2], sin[ (a - 1) _r/2]) c,

(cos[(2 or- 9) w/4], sine (2 or- 9) _'/4]) x/_'2c,

_=0,

or= I-4,

_=5-8,

(l)

where c = fi_/3_ is the unit of velocity and fi_ and fit are the

lattice constant of the lattice space and the unit of time (time
step), respectively. From here on we shall use the units of

fix = 1 and fit = 1 such that all the relevant quantities are di-

mensionless. The above discrete velocities correspond to the

particle motion from a lattice node rj to either itself, one of
the four nearest neighbors (o_= 1-4), or one of the four

next-nearest neighbors (o¢--5-8). This model can easily be

extended to include more discrete velocities and in space of
higher dimensions, thereby including further distant neigh-
bors to which the particles move in one time step. Neverthe-

less, "hopping" to a neighbor on the lattice induces inherent
limitations in the discretization of velocity space.

For the particular model discussed here, nine real num-

bers describe the medium at each node rj of a square lattice:

The number f,_ can be considered as the distribution function

of velocity e,, at location rj (and at a particular time t). The
set {f,_} can be represented by a vector in R 9 that defines the
state of the medium at each lattice node:

If(rj)) =-(f0 ,fl ..... fs) "r. (2)

Once the vector If(r:)) is given at a point rj in space, the
state of the medium at this point is fully specified.

The evolution of the medium occurs at discrete times t

=n8 t (with fit := 1). The evolution consists of two steps: (1)

motion to the relevant neighbors (modeling of advection) (2)
redistribution of the {f,_} at each node (modeling of colli-

sions). These steps are described by the equation

{f=(rj)l c_=0,1 ..... 8}. f_(rj+%,t+l)=f_(rj,t)+f_,_(f). (3)
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The above equation is the so-called lattice Boltzmann equation (LBE). The lattice Boltzmann equation can be rewritten in a
concise vector form:

If( rj + eof,t + 1 )) = [f(rj t)) + [Af}, (4)

where the following notations are adopted:

[f(rj + eof ,t+ 1 )}-_ [f0(rj + e0,t + 1 ),fl(rj+ el ,t+ 1 ) .... ,fs(rj + e8 ,t+ I)] "r, (5a)

{Af) _ [a0(f),al (f) ..... 12s(f)]r, (5b)

so that }f(rj+e,,,t+ 1)) is the vector of a state after advec-
tion, and [Af) is the vector of the changes in If) due to
collision EL

The advection is straightforward in the LBE models. The

collisions represented by the operator f_ may be rather com-

plicated. However, 12 must satisfy conservation laws and be
compatible with the symmetry of the model (the underlying

lattice space). This might simplify 1"} considerably. One
simple collision model is the BGK model [34,2,3]:

1
l'_of= - _ [fof_f(eq)], (6)

T --

where r is the relaxation time in units of time step 6t (which

is set to be 1 here), and f(_q) is the equilibrium distribution

function that satisfies the following conservation conditions
for an athermal medium:

P = _ f(eq)= _ fof, (7a)
iff of

pu= E eoJ4_eq)= E ejof, (7b)
ot of

where p and u are the (mass) density and the velocity of the

medium at each lattice node, respectively. For the so-called
nine-velocity BGK model, the equilibrium is usually taken as

f(aeq)=wap[ 1 +3(%

where w 0= 4/9, wi,2.3,4 = 1/9,

9 2 3,]

•u) +_(%-u) - _-u-],

and w5,6,7,8= 1/36.

(8)

Some shortcomings of the BGK model are apparent. For
instance, because the model relies on a single relaxation pa-

rameter _', the Prandtl number must be unity when the model
is applied to thermal fluids, among other things. One way to

overcome these shortcomings of the BGK LBE model [2,3]
is to use a generalized LBE model which nevertheless retains

the simplicity and computational efficiency of the BGK LBE
model.

III. MOMENT REPRESENTATION

AND GENERALIZED 2D LBE

Given a set of b discrete velocities, {%]a=0,1 ..... (b
-1)} with corresponding distribution functions, {fof]a

=0,1 ..... (b-1)}, one can construct a b-dimensional vec-
tor space Rb based upon the discrete velocity set, and this is

usually the space mostly used in the preceding discussion of

the LBE models. One can also construct a space based upon

the (velocity) moments of {fof}. Obviously, there are b inde-
pendent moments for the discrete velocity set The reason in

favor of using the moment representation is somewhat obvi-
ous. It is well understood in the context of kinetic theory that

various physical processes in fluids, such as viscous trans-
port, can be approximately described by coupling or interac-
tion among "modes" (of the collision operator), and these
modes are directly related to the moments (e.g., the hydro-
dynamic modes are linear combinations of mass, and mo-
menta moments). Thus the moment representation provides a
convenient and effective means by which to incorporate the
physics into the LBE models. Because the physical signifi-
cance of the moments is obvious (hydrodynamic quantities
and their fluxes, etc.), the relaxation parameters of the mo-
ments are directly related to the various transport coeffi-
cients. This mechanism allows us to control each mode in-

dependently. This also overcomes some obvious deficiencies
of the usual BGK LBE model, such as a fixed Prandtl num-

ber, which is due to a single relaxation parameter of the
model.

For the nine-velocity LBE model, we choose the follow-
ing moments to represent the model:

IP) = (1,1,1,1,1,1,1,1,I)'r, (9a)

le) = ( - 4,- 1, - 1, - 1,- 1,22,2,2)T, (9b)

te} = (4,2,2,2,2,1,1,I,1)'r (9c)

lJ_) = (0,1,0,- 1,0,1,- 1,- 1,1 )r, (9d)

Iqx) = (0,- 2,0,2,0,I,- 1,- 1,1 )T, (9e)

[Jr) = (0,0,1,0,- 1,1,1,- 1,- 1) r, (9f)

[qy) = (0,0,- 2,0,2,1,1,- 1,- 1 ) v , (9g)

Ipxx) = (0,1,- 1,1,- 1,0,o,0,0) r, (9h)

lPxy) = (0,0,0,0,0,1,- 1,1,- 1) r. (9i)

The above vectors are represented in the space V=R 9

spanned by the discrete velocities {eof}, and they are mutu-
ally orthogonal to each other. These vectors are not normal-
ized; this makes the algebraic expressions involving these
vectors which follow simpler. Note that the above vectors
have an explicit physical significance related to the moments
of {f,_} in discrete velocity space: ]p) is the density mode;
le) is the energy mode; le) is related to energy square; [ix)
and {jy) correspond to the x and y components of momentum

(mass flux); Iq_) and ]qy) correspond to the x and y compo-
nents of energy flux; and [P_x) and lPxy) correspond to the
diagonal and off-diagonal component of the stress tensor.

The components of these vectors in discrete velocity space
V= R 9 are constructed as follows:

Ip)o=leofl°=1, (10a)
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Thus,

le).= -41%1°+ 3(e_:+ e_,,),

21 2 2 9 , 2 ,
1 ).=41e°l°- 5(e;,:+

Ij.L=e.,.,
2

Iq_),.=[- 5le.l° + 3(e.,. + e'_,r)]e_,,x,

IJy)a=ea,y,

0 "_iq,> =[_51e.i +3(e_x + 2. ea,y)]ea.y,

2 2
]Pxx)a= e a,x- e a,y ,

IPxy) a= e a,xe a,y •

p=<plf>=(flp>,

e=<elf)=(fle>,

jx=(:xlf)=(flJx>,

(10b)

(lOc)

(lOg)

(]0e)

(10f)

(lOg)

(lOh)

(lOi)

(lla)

(lib)

(]]c)

(11d)

jr=(jylf)=(fljr),

qy=(qrlf}=(flq,>,

pxx= (pxxlf)= (flpx,),

(lie)

(]If)

(llg)

(1 lh)

(11i)

Similar to {f,_}, the above set of moments can also be con-
cisely represented by a vector:

I_)_(p,e,e,jx ,q_ ,jy ,qy ,Pxx,P_y) T. (12)

There obviously exists a transformation matrix M between

IQ) and If) such that

I_) = MIf), (13a)

I/) = M-l] @). (13b)

In other words, the matrix M transforms a vector in the vec-

tor space V spanned by the discrete velocities into a vector in
the vector space M=R b spanned by the moments of {f,}.

The transformation matrix M is explicitly given by

M_

<ol

<el

(J,_l

<q,I

(Jyl

<qr[

<pxxl

<pxyl

1

-4

4

0

- 0

0

0

0

0

1 1 1 1 1 1 1 1

-1 -1 -1 -1 2 2 2 2

-2 -2 -2 -2 1 1 1 1

1 0 -1 0 1 -1 -1 1

-2 0 2 0 1 -1 -1 1

0 1 0 -1 1 1 -1 -1

0 -2 0 2 1 1 -1 -1

1 -1 1 -1 0 0 0 0

0 0 0 0 1 -1 1 -1

-_(tp>,le>,le>,lj,>,lq,>,ljy),lqy>,lp_>,lpxr> r.

(14)

The rows of the transformation matrix M are organized in the

order of the corresponding tensor, rather than in the order of

the corresponding moment. The first three rows of M corre-

spond to P, e, and e, which are scalars or zeroth-order ten-

sors, and they are zeroth-order, second-order, and fourth-

order moments of {f,_}, respectively. The next four rows

correspond to Jx, qx, Jy, and qy, which are vectors or first-
order tensors, and Jx and Jr are the first-order moments,

whereas qx and qy are the third-order ones. The last two
rows represent the stress tensor, which are second-order mo-

ments and second-order tensors. Again, this can easily be
generalized to models using a larger discrete velocity set,

and thus higher-order moments, and in three-dimensional
space. The main difficulty when using the LBE method to

simulate a real isotropic fluid is how to systematically elimi-

nate as much as possible the effects due to the symmetry of
the underlying lattice. We shall proceed to analyze some
simple (but nontrivial) hydrodynamic situations, and to make

the flows as independent of the lattice symmetry as possible.

I

Because the medium simulated by the model is athermal,

the only conserved quantities in the system are density p and

linear momentum j= (ix ,Jr ). Collisions do not change the
conserved quantities. Therefore, in the moment space M, col-

lisions have no effect on these three quantities. We should

stress that the conservation of energy is not considered here
because the model is constructed to simulate an athermal

medium. Moreover, we find that the nine-velocity model is
inadequate to simulate a thermal medium because it cannot

have an isotropic Fourier law for the diffusion of heat. Al-
though the conserved moments are not affected by collisions,

the nonconserved moments are affected by collisions, which
in turn cause changes in the gradients or fluxes of the con-

served moments, which are higher-order moments. In what
follows, the modeling of the changes of the nonconserved
moments is described.

Inspired by the kinetic theory for Maxwell molecules
[35], we assume that the nonconserved moments relax lin-

early towards their equilibrium values that are functions of
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theconservedquantities.Therelaxationequationsfor the
nonconservedmomentsareprescribedasfollows:

e* = e-s2[ e- e(eq)], (15a)

_ * = e- s3[ e - e(eq)], (15b)

q* = qx- ss[ qx - qx(eq)l], (15c)

* (eq)l, (15d)qy=qy-sT[qy-qr j

, _ _ _ (eq)Pxx-Pxx ss[Pxx Pxx ], (15e)

, _ _ (eq)
Pxy--Pxy--s9[Pxy Pxy ]' (15f)

where the quantities with and without superscript * are post-
collision and pre-collision values, respectively. The equilib-
rium values of the nonconserved moments in the above equa-

tions can be chosen at will provided that the symmetry of the

problem is respected. We choose

1

e(eq)=(-_le) [ ot2<plp>p-b yz( (jxlJx>jZ_ + (jylJy>j_) ]

1 1 2 "_

= _ ct2p+-_ y2(Jx + Jy), (16a)

to solve the mathematically difficult problem to create an

interparticle collision mechanism for the fictitious particles
in the LBE models that would give the same eigenmodes of

the collision operator in the continuous Boltzmann equation.
However, what can be accomplished is that by carefully

crafting a simple model with certain degrees of freedom, we
can optimize large-scale properties of the model in the sense

that generalized hydrodynamic effects (deviations from hy-
drodynamics) are minimized.

The values of the unknown parameters, c l, 0'2,3, and

"}/1.2,3,4,shall be determined by a study of the modes of the
linearized collision operator with a periodic lattice of size

N x × Ny.

It should be noted that in Eq. (16) the density p does not

appear in the terms quadratic in j. This implies that the den-

sity fluctuation is decoupled from the momentum equation,
similar to an incompressible LBE model with a modified
equilibrium distribution function [36]:

j6_)-w,_{p+po[3(e,_.u) 9 2 3 2]- ]}, (17)

where the mean density P0 is usually set to be 1. The model

corresponding to the equilibrium distribution function of Eq.

(8) shall be analyzed in Appendix A.

1

(eq) _-- _ [ 0, 3 <PIP> P -t- ")z4( (j_IL>j_ + <JylJy>J_) ]

1 1 ._ .2
=-_3p+-_ y4(j;, + jy), (16b)

(eq) <JxlJx) . 1
qx =_C,Jx = _c,j x, (16c)

(_) <JylJy) . 1

qy =_ClJy= _Cljy, (16d)

1 _ 1 2

(_q) Y'<Pxx'(Pxx> ((JxlJx)Jx-(JY[Jr>J_)=-_Yl(Jx-JY)'lJ xx

(16e)

(eq)_ _/(JxlJx)(JylJy> I

Pxy -- Y3" (PxxlPxx> (JxJy)= "_Y3(J.dy)" (16f)

The values of the coefficients in the above equilibria (c 1 ,

oe2.3, and 71.2,3,4) will be determined in the next section and
summarized in Sec. V E. The choices of the above equilibria
are made based upon inspection of the corresponding mo-

ments given by Eqs. (10), or the physical significance of

these moments. Note that in principle qx and qy can include
terms involving third-order terms in terms of moment, such

as j3 and JxPxx [14], and e can include fourth-order terms.

Nevertheless, for the nine-velocity model, these terms of

higher order are not considered because either they do not
affect the hydrodynamics of the model significantly, or they
lead to some highly anisotropic behavior which is undesir-

able in the LBE modeling of hydrodynamics.
Clearly, LBE modeling of fluids is rather different from

real molecular dynamics. Therefore, it is not necessary to try

IV. LINEARIZED LBE

We consider the particular situation where the state of the

medium is a flow specified by uniform and steady density/9

(usually p= 1, so the uniform density may not appear in

subsequent expressions) and velocity in Cartesian coordi-

nates V= (V_, Vr), with a small fluctuation superimposed:

[f>= If(°)> +[&>, (18)

where If (°)) represents the uniform equilibrium state speci-

fied by uniform and steady density /9 and velocity V

= (V x , Vy), and ISf> is the fluctuation. The linearized Bolt-
zmann equation is

I,Sf(rj+e..,t+ l)>=l&(rj,t))+O<°)lU(rj,t)> (19)

where 12(0) is the linearized collision operator:

f_(o,_ all,, V>:b_°)> o) )
(20)

In the moment space M, the linearized collision operator can
be easily obtained by using Eqs. (15) and (16):

<e_le#) aae_
C#_'=<e,,IQ.) a_# Ile)=le(O))'

(21)

where Q,_ and ]_,_), or=0,1 ..... (b-1) are the moments

defined by Eqs. (11) and the corresponding vectors in V
=R 9 defined by Eqs. (9); AC,, is the change of the moment
due to collision given by Eqs. (15); 1_)= [_(0)) is the vector

of all moments at the uniform equilibrium state [see Eq. (12)

for the definition of 1_)]. Obviously the linearized collision
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operatorCdependsontheuniformstatespecifiedbydensityp and velocity V = (Vx, Vy), upon which the perturbation I t3f> is

superimposed. Specifically, for the nine-velocity model,

C_

0 0 0 0 0 0 0 0 0

szcr2/4 -s2 0 s2y2Vx/3 0 szy2Vr/3 0 0 0

s3a'3/4 0 -s 3 s374Vx/3 0 s3y4Vy/3 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 s:l/2 -s 5 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 S7Cl/2 -s 7 0 0

0 0 0 3ss"glV x 0 -3S8TiVy 0 -s 8 0

0 0 0 3S9T3Vy/2 0 3s9_/3Vx/2 0 0 -s 9

(22)

The perturbation in the moments corresponding to I ,Sf) is

1,5_>, and [,_) = M 18f). The change of the perturbation due
to collisions is linearly approximated by [A_>=CId_/ in

the moment space M spanned by ..... (b

- 1)}. This change of state in discrete velocity space V is
lAY> = M-1GI @>. Therefore, Eq. (19) becomes

18f(r/+ e,, ,t+ 1)> = Ifif(rj ,t)> + M-ICMI fif(b ,t)>.
(23)

In Fourier space, the above equation becomes

Al_f(k,t+t))=[l+M-XCM]l_f(k,t)), (24)

where A is the advection operator represented by the follow-
ing diagonal matrix in discrete velocity space V=R9:

A,_# = exp(ie,,, k) &,_#, (25)

where 6_,# is the Kronecker delta. It should be noted that for

a mode of wave number k= (k,,ky) in Cartesian coordi-
nates, the advection operator A in the above equation can be
written as follows:

I _f(k,t + 1)> = t I_f(k,t)>, (28)

where

L-A-I[I+M-ZCM], (29)

is the linearized evolution operator.

V. MODES OF LINEARIZED LBE

A. Hydrodynamic modes and transport coefficients

The evolution equation (23) is a difference equation that

has a general solution:

IG(rj,t=l)) K" " l= ,Kyz IGo>, (30)

where m and n are indices for space (rj=mx+ny), and

and y are units vectors along the x axis and y axis, respec-

tively; IG0) is the initial state. We can consider the particular

case of a periodic system such that the spatial dependence of
the above general solution can be chosen as

A= diag( 1,p,q, 1/p, llq,pq,q/p, l/pq,plq), (26)

where

p = e ikx, q = e_k.v. (27)

The advection can be decomposed into two parts, along two
orthogonal directions, such as x axis and y axis in Cartesian
coordinates:

A(kx) - A(kx ,ky = 0) = diag( 1,p, 1,1/p, l,p, i/p, 1/p,p),

A(kr) - A(kx= O,ky) = diag( 1, l,q, 1,1/q,q,q, 1/q, l/q),

and A(kx) and A(ky) commute with each other:

A= A( kx) A( ky ) = A( ky)A( kx),

i.e., the advection operation can be applied along the x direc-
tion first, and then along the y direction, or vice versa. The
linearized evolution equation (24) can be further written in a
concise form:

I exp(-ik'rj+zt)lG(rj,t)). (31)

By substituting Eqs. (30) and (31) into the linearized LBE

(28), we obtain the following equation:

zlGo>=LIGo>, (32)

The above equation leads to the dispersion relation between
z and k:

det[L- z I] = O, (33)

which determines the transport behaviors of various modes

depending on the wave vector k. The solution of the above
eigenvalue problem of the linearized evolution operator L

provides not only the dispersion relation, but also the solu-
tion of the initial value problem of Eq. (28):

b

IU(k,t)> = L'I _Sf(k,0)> = _ ztalz,_><z,_t 8f(k,0)>,
ot=l
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where Iz,_) is the eigenvector of L with eigenvalues z,_ in

discrete velocity space V.
The eigenvalue problem of Eq. (33) cannot be solved ana-

lytically in general, except for some very special cases. Nev-
ertheless, it can be easily solved numerically using various

packages for linear algebra, such as LAPACK. For small k, it
can be solved by a series expansions in k. The only part of /

that has k dependence is the advection operator A. Therefore,

we can expand A-l in /:

K=-A-1 = K(0) + K(l)(k) + K_2)(k2) +... + KC,)(k n) +...,

(34)

where K (n) depends on k":

1

w(n)'"a13-- -_.. ( - ik. e,_)n8a# (35)

When k=0, the eigenvalue problem of the (b×b) matrix
L_°) = (1+ M- tCM) can be solved analytically. There exists

an eigenvalue of 1 with threefold degeneracy, which corre-
sponds to three hydrodynamic (conserved) modes in the sys-
tem: one transverse (shear) and two longitudinal (sound)

modes. It is interesting to note that when k=(Tr,0) or k
= (0,_), L also has an eigenvalue of - 1, which corresponds
to the checkerboard mode, i.e., it is a conserved mode of Lz.

Being a neutral mode as far as stability is concerned, it will
be necessary to study how it is affected by a mean velocity
V. Thus we shall have to analyze the model for k ranging

from 0 to 7r, which the standard Chapman-Enskog analysis
cannot do.

The hydrodynamic modes at k= 0 are

IQT) = cos Oljx)- sin Oljy)=-[jr), (36a)

l = Io)- (coselj,>+ sin O[jy)) =--[p)---IJL), (36b)

where 0 is the polar angle of wave vector k. For finite k, the
behavior of these hydrodynamic modes depends upon k. In

two-dimensional space, these linearized hydrodynamic
modes behave as follows [37]:

Ie =z%le

= exp[- ik(g V cos _b)t]

×exp(- l:kZt )l_ T(O) ), (37a)

l e +(t)) = z le _<o)>

= exp[+_ik(cs+_gVcos _b)t]

x exp[- (v/2 + _)kZt]l_ =(0)), (37b)

where v and _"are the shear and bulk viscosity, respectively;

the coefficient g indicates whether the system is Galilean

invariant (that g= 1 implies Galilean invariance); c s is the
sound speed; V is the magnitude of the uniform streaming

velocity of the system V= (Vx, Vy); and _b is angle between
the streaming velocity V and the wave vector k. The

Galilean-coefficient g(k) is similar to the g factor in the
Frish-Hasslacher-Pomeau lattice gas automata 115-17],
which also determines the Galilean invariance of the system.

The transport coefficients and the Galilean-coefficient are re-

lated to the eigenvalues of k as the following:

1
v(k) = - _---_Re[ln zr(k)], (38a)

k"

1

g(k)Vcos _b= - _-Im[ln zv(k)], (38b)

1 1

_ v(k) + _'(k) = - k-_Re[ln z ±(k)], (38c)

1

cs(k)z__g(k)Vcos _b= 7_-Im[ln z±(k)], (38d)

where z r(k) and z +(k) are the eigenvatues corresponding to

the hydrodynamic modes of the linearized evolution operator
k. Since the transport coefficients can be obtained through a

perturbation analysis, we shall use the following series ex-

pansion in k:

v(k)=v o-vlk2+...+(-1)"v.k2"+ "'', (39a)

_(k)=_0-_lk2--I - ... +(-1)"_,k2"+ -.., (39b)

cs(k)=Co-Ctk2+ ... +(- 1)"C,kZ"+ .. ., (39c)

g(k)=go-glk2+...+(-1)"g,k2"+ ..-. (39d)

It should be noted that, in the usual Chapman-Enskog analy-

sis of LBE models, one only obtains the values of the trans-

port coefficients at k=0. As we shall demonstrate later,

higher-order corrections to the transport coefficients (i.e., hy-
perviscosities) are important to the LBE hydrodynamics, es-

pecially for spatial scales of a few lattice spacings.
One possible method by which to solve the dispersion

relation det[k-zl]=0 is to apply the Gaussian elimination
technique using lls,_ as small parameters for the noncon-
served modes (the kinetic modes). Starting from a 9×9 (b

× b in general) determinant, we obtain a 3 × 3 determinant
for the three conserved modes. The elements of this new

determinant are computed as a series of 1/s,_ and k with the

necessary numbers of terms to achieve a given accuracy
when computing the roots of the dispersion equation.

It should be mentioned that the value of the present tech-

nique is that it provides a very simple means by which to
analyze models with various streaming and collision rules
with as many adjustable parameters as possible to be deter-

mined later when trying to satisfy either the stability criteria

or physical requirements to model various hydrodynamic
systems. Free parameters are the equilibrium coefficients in

Eqs. (16): c_, eri , and Yi ; and relaxation rates s,_.

B. Case with no streaming velocity (V= 0)

We first consider the case in which the streaming velocity
V=0. To the first order in k, we obtain two solutions of

Im(ln z_+)= _ikc s with

csZ= 3 (2 + -_-_) . (40)
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Thesearethesoundmodessupportedbythemedium.At the
nextorder,weobtainmodeswithRe(InZT)=- Vok2. To en-

force isotropy we need to have

1 1 2(1 11(c,+4)
-=s9 2 _- (41)

such that the 0 dependence in v0 vanishes,

(2--Ci) ( l
(42)

which can be interpreted as the shear viscosity of the me-
dium in the limit k= 0 (measured in basic units of space and

time). For the sound modes, we also find an attenuation rate
Re(lnz+_)=-(Uo/2+_o)k; where (u0/2+_" 0) is the longitu-

dinal kinematic viscosity in a two-dimensional system. The

bulk viscosity of the model at long-wave-length limit k=0 is

(cl + 10-12c_)(s__ 1)Co= 24 - . (43)

The positivity of the transport coefficients leads to the
bounds on the adjustable parameters:

- 16< cz2 , (44a)

-4<c1<2, (44b)

G= vcos 05____c_+ v 2cos2 05, (48)

where V cos 05-=V-/¢, and f_ is the unit vector parallel to k.

This clearly shows that the system obeys Galilean invariance

only up to first order in V. One way to correct this defect is

to allow for compressibility effects in the equilibrium prop-
erties, as shown in Appendix A. The dispersion of sound can

be computed either analytically, by carrying out the pertur-

bation expansion in k, or numerically, by solving the eigen-

value problem for any value of k. The dispersion of sound is
important when studying the nonlinear acoustic properties of
the medium.

Second, the attenuation of the transverse wave depends

not only on V but also on the direction of the wave vector k.

In order to eliminate the anisotropy in the V dependence of
the shear wave attenuation, we must choose

c, = - 2. (49)

With the above choice of cl, the shear viscosity in the limit

of k= 0 is given by

v 0= [s2(2- Ss)[Cs 2+ ( 1 - 3c_) V _-cos 2 05] + 3 [2 (s 8- s2)

+ s8(s 2-- 2) cos 2 05]V 4 cos 2 05]l[6sas8

x (v 2cos2 05+c_)]. (50)

and the bounds on the following relaxation parameters:

0<s2<2, (45a)

Similarly, from the attenuation of acoustic waves, one ob-
tains the bulk viscosity (in the limit of k=0) that has a

complicated dependence on the streaming velocity V:

0<s8<2. (45b)

The bounds for if2 and c l will be further narrowed in the

following analysis. Based upon the above results of v0, _'o,
and cs, it is clear that the model is isotropic at rest (i.e., the

streaming velocity V=0) and in the limit of k=0. The
Galilean-coefficient g cannot be determined when the

streaming velocity V=0. Therefore, the case of a finite
streaming velocity V is considered next.

C. Case with a constant streaming velocity V

As indicated by Eqs. (38), to the first order in k, the three

hydrodynamic roots of the dispersion equation (Zr and z_-)
give the phase gVcos 05and the sound speed Cs. In order to

cause the root of the transverse mode (Zr) to have a correct

phase corresponding to the streaming velocity V, as expected

for a model satisfying Galilean invariance, i.e., go = 1, we
must set

2

Y1=3/3 3" (46)

If we further set

_'2= 18, (47)

then we obtain the roots of the sound modes (z *_) which lead
to the sound speed

_'0= (V cos OS']V 2cos 2 05+ Cs2{12V2[(s2- Ss)

+s2(ss-2)cos 2 05]+(2s2-3s2ss+4Ss)(1 - 3csZ)}

+ 3 V 4 COS 2 05[C0S 2 qb(2Ss + 3SeSs- 8s2) + 6(S 2- Ss)]

+ 2 V 2 cos 2 0516(szs s- s2- Ss)C2_+ Ss(2 - s2) ]

+ c_[6 V2(s2- Ss) + Ss(2 - s2)

× (2- 3c_)])/{12S2Ss(V 2cos 2 05 q" C2)}. (51)

It is obvious that the streaming velocity V has a second order

effect on v 0, and a first-order effect on _'0. A careful inspec-

tion of the above result of _'o indicates that the first-order
effect of V on _'0 can be eliminated by setting c_= 1/3 (or,

equivalently, a 2= -8). Furthermore, the second-order effect

of V on the sound speed and the longitudinal attenuation can
also be eliminated by using a slightly more complicated

model with thirteen velocities, as noted by a previous work
[38].

In summary, although all the transport coefficients are
isotropic in the limit k= 0, some undesirable features of the

LBE models can be clearly observed at the second order in k
when the streaming velocity V has a finite magnitude. First,

the acoustic wave propagation is not Galilean invariant. Sec-
ond, both the shear and the bulk viscosities depend on V.
Nevertheless, these effects are of second order in V, and can

be improved te higher order in both k and V by incorporat-
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ing compressibility into the equilibrium properties of the mo-

ments (see Appendix A) or using models with a larger ve-

locity set.

D. Third-order result

The analysis in the preceding subsections shows that isot-

ropy for the hydrodynamic modes of the dispersion equation
can be attained to the first and second orders in k by care-

fully adjusting the parameters in the model. In the situation
with a uniform streaming velocity V parallel to k, we find
that the third-order term in k for the shear mode is aniso-

tropic, i.e.,

2

gl =- 3s 2

1

2
+ 1,3 + -- -- + V2 c0S2 ¢_3s8 5" s8

[1 X(s)]( 1)--+-- -1 cos 40-cos z0+_" .
+ 3-- S8 S5

The anisotropic term in g2 (depending
eliminated if we choose

(52)

on cos 0) can be

(2 -ss)

ss=3(3_ss). (53)

relaxation parameters si in the model as opposed to one in
the LBE BGK model. Two of them, s 2 and s 8, determine the

bulk and the shear viscosities, respectively. Also, because

Cl = -2, s9=s8 [see Eq. (41)]. The remaining three relax-

ation parameters, s3, ss, and sT, can be adjusted without
having any effect on the transport coefficients in the order of

k 2. However, they do have effects in higher-order terms.
Therefore, one can keep values of these three relaxation pa-

rameters only slightly larger than 1 (no severe over-
relaxation effects are produced by these modes) such that the

corresponding kinetic modes are well separated from those
modes more directly affecting hydrodynamic transport.

It is interesting to note that the present model degenerates
to the BGK LBE model [2,3] if we use a single relaxation

parameter for all the modes, i.e., s,_= lit, and choose

ot3= 4, (54a)

T4 = - 18. (54b)

Therefore, in the BGK LBE model, all the modes relax with

exactly the same relaxation parameter so there is no separa-
tion in time scales among the kinetic modes. This may se-

verely affect the dynamics and the stability of the system,

due to the coupling among these modes.

As indicated by Eq. (42), parameter ss is usually chosen
close to 2 from below in order to obtain a small shear vis-

cosity (and, consequently, a large Reynolds number). There-

fore, the preceding expression yields a small value for s 5.
This would lead to an undesirable consequence: Mode ]qx)

relaxed with the relaxation parameter s 5 would become a

quasiconserved mode leading to some sort of viscoelastic
effect [14]. Therefore, we usually choose to have large s 5
such that the advection coefficient of transverse waves has an

angular dependence for nonzero k in third order in k. That is,
the physical conservation laws are preserved at the expense
of the isotropy of the dispersion in third order (and all higher

orders) in k.
It should be noted that the value of g has effects on the

Reynolds number because the time t needs to be rescaled as

gt.

E. Optimization of the model and connection
to the BGK LBE model

Among seven adjustable parameters (cl, o<i, and yi) in
the equilibrium values of the moments in the model [see Eqs.

(16)], so far only five of these parameters have been fixed by

enforcing the model to satisfy certain basic physics as shown
in the preceding analysis: cl = -2, a2= -8, "/1= "/3=2/3,

and y2 = 18. These parameter values are the optimal choice
in the sense that they yield the desirable properties (isotropy,
Galilean invariance, etc.) to the highest order possible in
wave vector k. It should be stressed that the constraints im-

posed by isotropy and Galilean invariance are beyond the
conservation constraints -- models with only conservation

constraints would not necessarily be isotropic and Galilean

invariant in general, as observed in some newly proposed
LBE models for nonideal gases [39,40,9]. Two other param-

eters, et 3 and 3'4, remain adjustable. In addition, there are six

Vl. LOCAL STABILITY ANALYSIS

The stability of the LBE method has not been well under-
stood, although there exists some preliminary work [41,42].

However, previous work does not provide much theoretical

insight into either the causes or the remedies for the instabil-

ity of the LBE method. In the following analysis, a system-
atic procedure that identifies some causes of instability is
discussed and illustrated by some examples.

Our stability analysis relies on the eigenvalue problem for
the linearized evolution operator L, the dispersion equation.

For large values of k, one could in principle analyze the
dispersion equation to higher order by perturbation expan-

sion. In practice, it is more efficient to compute the roots of
the dispersion equation numerically. We shall try to identify
the conditions under which one of the modes becomes un-

stable: instability occurs when Re(In z,_)<0.
We have noticed some interesting qualitative properties of

the dispersion for the nine-velocity model when wave vector

k is parallel to certain special directions with respect to the
lattice line. These properties are listed in Table I. These

qualitative behaviors of the dispersion equation already dem-
onstrate the strong anisotropy of the dispersion relations dic-

tated by the lattice symmetry.
To exhibit the complex behavior of the dispersion equa-

tion, we compute the roots of the dispersion equation with a

given set of parameters. Figures l(a) and 1 (b) show the real
and imaginary parts of the logarithm of the eigenvalues as
functions of k, respectively. Figure 1 clearly exhibits the

coalescence and branching of the roots. This suggests a com-

plicated interplay between the modes of collision operator
affecting the stability of the model. The asymmetric feature
of these curves is due to the presence of a constant stream-

ing.
The growth rate of a mode Izc_), Re(In z_), depends on all



PRE 61 THEORY OF THE LATTICE BOLTZMANN METHOD: . ..

TABLE I. Special properties of the dispersion relation when wave vector k is of some special values.
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k Dispersion equation Conditions

[Z- 113=0

[Z--(1-sz)]=O

(0,0) [Z-(1 --s3)]=O Sr=Ss

[Z-(1-SS)]Z=O

[z-(l -ss)]2=0

( _+1,0) 7r

or

(0,+- 1)Tr

[z+ 1]=0

[z+(1-ss)]=0 or [z+(1-sv)]=0

[z+(1-s8)]=0 or[z+(1-Sg)]=0

1 + - 1]=0[z 2- _s_z s5

[Z4+½(S3-2S2)Z 3
1

+ _{52_S 8- 4s3) -- 6s3s 8 + 9(s2+ s3 + s 8 -- 2)}Z 2

+ _(s 8- I)(S2(S3-2)+S3)Z

+(1--s2)(l --s3)(1--Ss)]=0

(-L-_1,+__1) 7r

[z-(1-ss)]2=O

[Z 2 -- 1_ssz+ s 5- 112=0

[z 3+ _(1 ls 2- 3s 3- 9)z 2

+ _{3 (as 3- 3) - $2($3 ÷ 2)}z

+(1 -s2)(1 -s3)] = 0

the adjustable parameters: the relaxation parameters, the

streaming velocity V, and the wave vector k. To illustrate

this dependence, we consider the BGK LBE model with

lit= 1.99. Figure 2 shows the growth rate for the most un-

stable mode as a function of streaming velocity V and wave

vector k. For each V, we let k be parallel to V, with a polar

angle 0 with respect to the x axis. Then we search for the

most unstable mode in the interval 0_<k_ < 7r. For the nine-

velocity BGK LBE model, the unstable mode starts to appear

above V_ 0.07. Figure 2 shows the strong anisotropy of the

unstable mode: the growth rate significantly depends on the

direction of k, and the critical value of k at which the un-

stable mode starts to appear is also strongly anisotropic. We

also compute the growth rate for the most unstable mode

with V perpendicular to k, and find that the stability of the

model is generally qualitatively the same as when V is par-

allel to k, but is slightly more stable. Generally, we find that

the transverse mode is more stable than longitudinal modes.

In many instances we have observed that sound waves

propagating in the direction of the mean flow velocity V can

be quite unstable. This instability may be reduced by making

the first-order V-dependent term in the attenuation of the
2

sound waves [st0 in Eq. (51)] equal to 0 by choosing c s

= 1/3, as indicated in the preceding section. It should be

noted that when the growth rate is infinitesimal, it takes an

extremely long time for the instability to develop in simula-

tions. Because the unstable modes we have observed have a

large wave vector k (small spatial scale), as a practical means

of reducing the effect of instabilities in LBE simulations,

some kind of spatial or temporal filtering technique may be

used in the LBE schemes to reduce small-scale fluctuations

and thus to limit the development of instabilities.

It should be pointed out that we do not discuss here the

influence of boundary conditions that may completely

change the stability behavior of the model through either

lq

0.0

-0.3

'z r

Z÷

>
f

rr/2 rr

k,

' (b)

i ..... "1
0 rr/2 rf

k

FIG. 1. Logarithmic eigenvalues of the nine-velocity model.

The values of the parameters are a2=-8, a3=4, c_=-2, "/l

= "/3=2/3, y2 = 18, and y4 = - 18. The relaxation parameters are

s2-- 1.64, s3= 1.54, ss=s7 = 1.9, and ss=sg= 1.99. The streaming

velocity V is parallel to k with V= 0.2, and k is along the x axis. (a)

Re(In z,,) and (b) Im(ln z,,).
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= l/r_ < 1.99. Therefore, we can conclude that by carefully

separating the kinetic modes with different relaxation rates,
we can indeed improve the stability of the LBE model sig-

nificantly.

VII. NUMERICAL SIMULATIONS
OF SHEAR FLOW DECAY

To illustrate the dispersion effects on the shear viscosity

in hydrodynamic simulations using the LBE method, we
conduct a series of numerical simulations of the shear flow

decay with different initial velocity profiles. The numerical
implementation of the model is discussed next.

FIG. 2. Growth rate of the most unstable mode for the BGK

LBE model -In z,, vs the streaming velocity magnitude V. The
relaxation parameter sg= 1/_'= 1.99. The wave vector k is set par-
allel to the streaming velocity V. For each value of V with a polar
angle 0 with respect to the x axis, the growth rate is computed in the
interval 0<k_ < 7r in k space. Each curve corresponds to the growth
rate of the most unstable mode with a given V, and k parallel to V
with the polar angle 0 with respect to the x axis.

large-scale genuine hydrodynamic behavior or local excita-
tion of Knudsen modes.

As previously indicated, the adjustable parameters in our

model can be used to alter the properties of the model. The
stability of the BGK LBE model and our model is compared

in Fig. 3. In this case we choose the adjustable parameters in
our model to be the same as the BGK LBE model, but main-
tain the freedom of different modes to relax with different

relaxation parameters sa. Figure 2 shows that for each given
value of V, there exists a maximum value of s 8= 1/7" (which

determines the shear viscosity) below which there is no un-

stable mode. The values of other relaxation parameters used
in our model are s2= 1.63, s3= 1.14, ss=s7 = 1.92, and s9

=ss= l/v. Figure 3 clearly shows that our model is more
stable than the BGK LBE model in the interval 1.9_<s8

0.20

0.15

0.I0

0.05

BGK LBE Model

t .9 1.95

ss= 1/r

2.0

FIG. 3. Stability of the generalized LBE model vs the BGK
LBE model in the parameter space of V and s8 = 1/_-.The lines with
symbols [] and x are results for the BGK LBE model and the
model proposed in this work, respectively. The region under each
curve is the stable region in the parameter space of V and ss= l/r.
Note that the stability of the BGK LBE model starts to deteriorate
after ss_ 1.92, whereas the stability of the proposed generalized
LBE model remains virtually intact.

A. Numerical implementation and initial conditions

The evolution of the model still consists of two steps:
advection and collision. The advection is executed in discrete

velocity space, namely, to {f(x,t)), but not to the moments

I_(x,t)>. However, the collision is executed in moment
space. Therefore, the evolution involves transformation be-

tween discrete velocity space V and moment space M, simi-
lar to Fourier transform in the spectral or Galerkin methods.

The evolution equation of the model is

If(x + e.6, ,r + 6,)) = lf(x,t)) + M-_ S[I e (x,t))-I _(eq))],

(55)

where S is the diagonal relaxation matrix:

S=diag(O,-s2,-s3,0,-s5,0,-s7,-s8,-Sg). (56)

In simulations using the LBE method, the initial condi-
tions provided are usually specified by velocity and pressure

(density) fields. Often the initial condition of f,_ is set to its
equilibrium value corresponding to the given flow fields,

with a constant density if the initial pressure field is not

specified. The initial conditions of f,_ can include the first-

order effect f(2). The first-order effect in moment space is
obtained through Eq. (55):

le<J>)= S-_MDIf_ev), (57)

where D is a diagonal differential operator:

D.#= _5.#e a- V. (58)

Equation (57) is similar to Chapman-Enskog analysis of J42 ) .

For the shear flow, only the initial velocity profile is

given. The density mode is set to be uniform initially. The
remaining modes are initialized as the following:

O= 1, (59a)

2 ,3

e = - 2 + 3(u x + Uy), (59b)

"_ 2

e = 1 - 3(u;+ ur), (59c)

qx = - ux, (59d)

qr = - Uy, (59e)
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2

%-£(ax.x- or.,), (59 

I

Pxy = UxUy- _Ss ( OyUxq- OxUy)" (59g)

The terms in Pxx and Px, involving derivatives of the veloc-
ity field take into account viscous effects in the initial con-
ditions. These terms are obtained through Eq. (57). The first-
order terms in turn induce second-order contributions (with

respect to space derivatives) which are not included here.
This leads to weak transients of short duration if there is

separation of time scales (2 - Ss)._ (2 - ss).
Our first test is the decay of a sinusoidal wave in a peri-

odic system for various values of k. The numerical and the-

oretical results agree with each other extremely well and
confirm the k dependence of g and v. The agreement indi-

cates that our local analysis is indeed sufficiently accurate in
this case.

The next case considered is more interesting and reveal-
ing because the initial velocity contains shocks. Consider a

periodic domain of size N x X Ny-- 84 X 4. At time t = 0, we
take a shear wave ur(x,0 ) of rectangular shape (discontinui-

ties in u r at x=N_/4 and x=3N_14):

uy(x,0) = U0, 1 <x<_Nx/4,

3Nx/4<x<_Nx,

Uy(X,0)=-U0, Nx/4<x<_3Nx/4.

The initial condition ux(x,0) is set to a constant everywhere.
We consider two separate cases with and without a constant

streaming velocity V.

B. Steady case (V=0)

For the case of zero streaming velocity, the initial condi-
tion for ux is zero in the system. The solution of the Navier-

Stokes equation for this simple problem is

1.0

- 0.5

0.0

_4
v

N=/ 4 N=/ 2 3N=/4
X

1.0

0.5

0.0

N./ 4 N=/ Z 3N,/4
Z

FIG. 4. Decay of discontinuous shear wave velocity profile
uy(x,t ). The lines and symbols (x) are theoretical [Eq. (60)] and
numerical results, respectively. Only the positive half of each ve-
locity profile is shown. LBE model (a) with no interpolation, (b)
with the central interpolation and r = 0.5.

pendence of v(k) caused by the interpolation. This phenom-

ena is not necessarily connected to the Burnett effect, as
claimed by a previous work [46]. This artifact is also com-

monly observed in other CFD methods involving interpola-
tions.

Figure 5 shows the decay of ur(x,t) at one location of

Uy(X,t) = _ a n exp( - v,k]t)cos(k,x), (60)
n

where a,, is the Fourier coefficient of the initial velocity pro-

file Uy(X,O), v_=---v( k,), and k n= 27r(2n- 1)/N x . The mag-

nitude of the uy(x,0), U0 = 0.0001 in the simulations.
Figures 4(a) and 4(b) show the decay of the rectangular

shear wave simulated by the normal LBE scheme and the

LBE scheme with second-order central interpolation (with
r= 0.5, where r is the ratio between advection length 8x and

grid size Ax), respectively. (The detailed analysis of LBE

schemes with various interpolations is provided in Appendix
B.) The lines are theoretical results of Eq. (60) with z,(k,)

obtained numerically. The times at which the profile of

Uy(X,t) (normalized by U0) shown in Fig. 4 are t = 100, 200,

.... 500. The numerical and theoretical results agree closely
with each other. The close agreement shows the accuracy of

the theory. In Fig. 4(b), the overshoots at early times due to
the discontinuous initial condition are well captured by the

analysis. This overshoot is entirely due to the strong k de-

_ Theory

1.0 _ ..... slm.,,_o_

o

interpolated

0.5

0 0.08 0.16
r-'t

FIG. 5. Decay of discontinuous shear wave velocity ur(x,t) at a
location close to the discontinuity x = 3N_14. The solid lines and
dashed lines are theoretical and numerical results, respectively. The

LBE scheme with no interpolation does not have an overshooting,
whereas the LBE scheme with central interpolation and r=0.5 has.
The time is rescaled as r-2t.
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discontinuity, x=3Nx/4=63. We tested the normal LBE

scheme without interpolation and the LBE scheme with
second-order central interpolation with r = 0.5, and compared

the numerical results with theoretical ones. Again, the nu-
merical and theoretical results agree very well with each

other for both cases (with and without interpolation). Note
that the time is rescaled as r-Zt in the figure. It should be

pointed out that the LBE solutions of the flow differ from the
analytic solution of the Navier-Stokes equation in both short-

time and long-time behavior• Interpolation causes overshoot
in the velocity at the initial stage. Even without interpolation,

the LBE solution does not decay (exponentially) right away.
This is due to the variation of the viscosity with k and this

could be interpreted as the influence of the kinetic modes. (If
we had a vanishingly small Knudsen number, then the k

dependence would be negligible; however, all relaxation

rates must be smaller than 2 so that higher modes can play a
role.) This transient behavior is due to the higher-order effect

(of velocity gradient), as discussed previously,

C. Streaming case (Vfficonstant)

We also consider the case with a constant streaming in the
initial velocity, i.e., u_(x,O)=Vx=O.08. This allows us to
check the effects of the non-Galilean invariance in the sys-

tem. With a constant streaming velocity, the solution of the

Navier-Stokes equation is

(a)

1.0 _--
):

o

0.5 -

0.0

N,./4

, /
I

_ _ _,

X

3N J4

1

5N J4

,. 't

5N /4

uy( x,t ) = _'_ a, exp(- u,k _t )cos[ k,( x - g , V xt ) ] , (61)
tl

where g,_g(k_) is the Galilean coefficient.

Similarly to Fig. 4, Fig. 6 shows the evolution of Uy(X,t)
for the same times as in Fig. 4. The solid lines and the sym-

bols (X) represent theoretical and numerical results, respec-

tively. Shocks move from left to right with a constant veloc-
ity Vx = 0.08. Figures 6(a), 6(b), and 6(c) show the results for
the normal LBE scheme without interpolation, the scheme

with second-order central interpolation, and the scheme with
second-order upwind interpolation, respectively. In Figs.
6(b) and 6(c), the dashed lines are the results obtained by

setting g,= 1 in Eq. (61). Clearly, the effect of g(k) is sig-

nificant. For the LBE scheme with central interpolation, the
results in Fig. 6(b) with g(k)= 1 underpredict the overshoot-

ing at the leading edge of the shock and overpredict the
overshooting at the trailing edge, whereas the results in Fig.

6(c) for the LBE scheme with upwind interpolation overpre-
dict the overshooting at the leading edge of the shock and

underpredict the overshooting at the trailing edge.

_0.5-

0.0

I

! ' -

1 ,
I , ,

i t

N J4 3N J4

(e')

X

X

X

• 11(

t

5N J4

FIG. 6. Decay of discontinuous shear wave velocity profile

u),(x,t) with a constant streaming velocity V,= 0.08. The solid lines
and symbols (X) are theoretical [Eq. (61)] and numerical results,
respectively. The dashed lines in (b) and (c) are obtained by setting
g,= 1 in Eq. (61). LBE model (a) with no interpolation, (b) with
central interpolation and r = 0.5, (c) with upwind interpolation and
r=0.5.

VIII• CONCLUSION AND DISCUSSION

In this paper, a generalized nine-velocity LBE model

based on the generalized LBE model of d'Humi_res [27] is
presented. The model has the maximum number of adjust-

able parameters allowed by the discrete velocity set. The
values of the adjustable parameters are obtained by optimiz-

ing the hydrodynamic properties of the model through the
linear analysis of the LBE evolution operator. The linear

analysis also provides the generalized hydrodynamics of the
LBE model, from which dispersion, dissipation, isotropy,

and stability of the model can be easily analyzed. In sum-

mary, a systematic and general procedure by which to ana-

lyze the LBE models is described in detail in this paper.

Although the model studied in this paper is relatively simple,
the proposed procedure can be readily applied to analyze

more complicated LBE models•
The theoretical analysis of the model is verified through

numerical simulation of various flows. The theoretical results

closely predict the numerical results. The stability of the
model is also analyzed and compared with the BGK LBE
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model.It isfoundthatthemechanismofseparaterelaxations
forthekineticmodesleadsto amodelwhichismuchmore
stablethantheBGKLBEmodel.

Theproposedmodelis a Galerkintypeof scheme.In
comparisonwiththeBGKLBEmodel,theproposedmodel
requiresthetransformationsbetweenthediscretevelocity
spaceVandthemomentspaceN backandforthineachstep
in theevolutionequation.However,theextracomputational
costduetothistransformationisonlyabout10-20%ofthe
totalcomputingtime.Thus,thecomputationalefficiencyis
comparabletotheBGKLBEmodel.Ouranalysisalsoshows
thattheLBEmodelswithinterpolationschemeshaveenor-
mousnumericalhyperviscositiesandanisotropiesdueto the
interpolations.

We alsofindoptimalfeaturesof theproposednine-
velocitymodel:it isdifficulttoimprovethemodelbysimply
addingmorevelocities.Forinstance,wefoundthatadding
eightmorevelocities(___1,___2)and(___2,___1)wouldnotim-
provetheisotropyof themodel.However,ouranalysisdoes
notprovideanya priori knowledge of an optimal set of

discrete velocities. That problem can only be solved by op-
timization of the moment problem in velocity space [24]. It

is also worth noting that the values of all but two (a 3 and

Y4) of the adjustable parameters in our model coincide with
the corresponding parameters in the BGK LBE model. The
main distinction between our model and the BGK LBE

model is that our model has the freedom to allow the kinetic

modes to relax differently, whereas in the BGK LBE model,
all kinetic modes relax at the same rate. This mechanism

severely affects the stability of the BGK LBE schemes, es-
pecially when the system is strongly overretaxed.

It should be mentioned that the procedure we propose
here can be applied to analyze the linear stability of spatially
nonuniform flows, such as the Couette flow, Poiseuille flow,

or lid-driven cavity flow. For spatially nonuniform flows, the

lattice Boltzmann equation is linearized over a finite domain
including boundary conditions. This leads to an eigenvalue

problem with many more degrees of freedom than was
needed in the analysis of this paper. Standard Arnoldi tech-
niques [47] allow us to determine parts of the spectrum of

the linearized collision operator, in particular to study the
flow stability. This analysis enables us to understand the ob-
servation that some flows are much more stable than what is

predicted by the linear analysis of spatially uniform flows.

For instance, in plane Couette flow with only two nodes
along the flow direction, the only possible values of k along
the same direction are 0 and 7r, which are far from the value

of k at which the bulk instability occurs. Namely, the recip-

rocal lattice k is not large enough to accommodate the pos-

sible unstable modes. Furthermore, in the direction perpen-
dicular to the flow, although the reciprocal lattice k can

accommodate unstable shear modes, the velocity gradient,
alters the stability of the system. (It improves the stability in

this particular case.)

One philosophic point must be stressed. We deliberately
did not derive the macroscopic equations corresponding to
the LBE model in this work; instead, we only analyzed the

generalized hydrodynamic behavior of the modes of the lin-
earized LBE evolution operator. We argue that if the hydro-

dynamic modes behave exactly the same way as those of the
linearized Navier-Stokes equations, up to a certain order of

k, provided that the Galilean invariance is also assured up to
a certain order of k, then we can claim that the LBE model is

indeed adequate to simulate the Navier-Stokes equations (up
to a certain order of k). There is no distinction between the

LBE model and the Navier-Stokes equations up to a certain

order of k. Thus, there is no need to use the Chapman-

Enskog analysis to obtain the macroscopic equations from
the LBE models. On the other hand, we have also shown

that, in the limit of k= 0, these two approaches obtain the

same results in terms of the transport coefficients and the
Galilean coefficient. Nevertheless, it is very difficult to apply

the Chapman-Enskog analysis to obtain the generalized hy-

drodynamics of the LBE models, which is important to LBE
numerical simulations of hydrodynamic systems. The stabil-

ity result obtained by the linear analysis presented in this
paper is very difficult for the standard Chapman-Enskog

analysis to obtain. Therefore, the proposed procedure by
which to analyze the LBE model indeed contains more in-

formation and is more general than the low-order Chapman-
Enskog analysis. Despite its generality and power, the linear

analysis has its limitations. Because it is a local analysis, it
does not deal with gradients.

Our future work will extend the analysis to fully thermal
and compressible LBE models in three-dimensional space.
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APPENDIX A: COUPLING BETWEEN DENSITY

AND OTHER MODES

To consider the coupling between the density fluctuation

tSp = p-(p) and other modes, e, e, Pxx, and Pxy, the equi-
librium values of these modes are modified as to the follow-

ing:

e (eq)= a2p+ y2(j2x+j2)(2-p), (Ala)

• .2 .2_:(eq) = a,3p + Y4(Jx +jy)(2 - p), (Alb)

p(xexq)= .2 -'_Yl(Jx +./;)(2- p), (Alc)

(eq) _
Pxy - Y3(jxjy)(2- P), (Aid)

where (2-p) is used to linearly approximate lip when the
averaged density P0------(P)= 1. With the above modifications,
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FIG. 7. k dependence of viscosities for various models. The

values of the adjustable parameters and the relaxation parameters

are the same as in Fig. 1. The solid lines, dotted lines, and dashed

lines correspond to 0=0, 7r/8, and 7r/4, respectively. LBE model

(a) with no interpolation, (b) with central interpolation, and (c) with

upwind interpolation.

four elements in the first column of the linearized collision

operator C accordingly become

[1 1 2 "]

ct = Vx+ j, (A2a)

[1 1 2 "]

C,3= s3[S '_3--i ",',,( V, + V;) j ,
(A2b)

3 2

c_= - _,s ",'t(v,,- v2r), (A2c)

3

Cw = - _-s9 Y3 VxVy. (A2d)

Based on the linearized collision operator with the above

changes, the shear and the bulk viscosities at the limit of k

---_0 are

1

Vo=_-(1- V2 cos 2 q_) (1- 21--), (A3)

I

_'o= 1-_s_ (2 - 3 c_Z) (2 -s2)

V cos

12CsS2S8
( 1 - 3c_)(3S2Ss- 2s2 -- 4Ss)

V 2

+ 4-_2s_[S2-Ss+2(S2Ss-S2-Sg)COS2 C_]

0_V3 cos

+ _'[S2--S8+S2(Ss--2)COS 2 q_]. (A4)

4css2s8

The sound modes propagate with velocity V__+ c, (at first or-

der in k). The Galilean coefficient up to O(k 2) is

i

1.2

- -- -- 0_¢r,'g S"'"" "_"

"_ 1.0

.........-_:..
0.8

o 7r/4 ,r/z

FIG. 8. k dependence of the Galilean coefficient g for various

models. Solid lines, dotted lines, and dashed lines correspond to 0

=0, rr/8, and 7r/4, respectively• The middle three curves are g(k)

for the LBE model without interpolation, the lower three for the

LBE model with central interpolation and r=0.5, and the upper

three for the LBE model with upwind interpolation and r= 0.5.

k 2

g=l+ _[(Ss-2)(ss-ss)(SsS8-3ss--3ss+6)
3sss s

k2V 2

+(cos 4 0-- cos 2 0)]+ -----Z---_,[(2-ss)(Ss-S2)sin 2 q5
6c;s2s_

2 2
+ 2css2(ss-6Ss+6)cos 2 (a]. (A5)

APPENDIX B: INTERPOLATED LBE SCHEME

Recently, it has been proposed to use interpolation

schemes to interpolate {f,_} from a fine mesh to a coarse

mesh in order to improve the spatial resolution calculations

for a limited cost in total number of nodes [43,44]. Obvi-

ously, the interpolation schemes create additional numerical

viscosities. The Chapman-Enskog analysis shows that any

second- or higher-order interpolation scheme does not affect

the viscosities in the limit k---_ 0 on the fine mesh. A problem

with much greater importance in practice is to calculate the

viscosity at finite k. To our knowledge, no such analysis is

now available in the literature.

In the interpolated LBE schemes, the advection step is

altered by the interpolation scheme chosen, while the colli-

sion step remains unchanged. The advection on a fine mesh

combined with interpolation on a coarse mesh is the recon-

struction step on the coarse mesh. Therefore, to obtain the

modified linearized evolution operator/, only the advection

operation A must be changed. In what follows, we shall con-

sider a coarse mesh with lattice constant 8x, and time step

8 z. The lattice constant of a underlying fine mesh is r8 x,

with r_< 1. Effectively, the hopping velocities of particles are

reduced by a factor of r on coarse mesh. Therefore, dimen-

sional analysis suggests that the sound speed is reduced by a

factor of r, and the viscosities are reduced by a factor of r 2 in

the limit k= 0. However, the dimensional analysis does not

provide any information about the quantitative effects of in-

terpolation when k is finite. We shall analyze the effects of

some commonly used second-order interpolation schemes in
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the LBE methods. For simplicity, we shall only deal with a
uniform mesh with square grids.

1. Central interpolation

The reconstruction step with second-order central interpo-
lation is given by the following formula:

r(r- 1) ,
1-r )f_(rj)f_(rj)= _ .f*_(rj-_r`,)+( 2 •

r(r+ 1) .

+ _f_*(rj + 3r_), (B 1)

where f* is the post-collision value off,,, i.e.,

2. Upwind interpolation

The upwind direction in the LBE method is relative to the

particle velocity % (the characteristics) rather than the flow
velocity u. Therefore, the interpolation stencil is static in

time. Second-order upwind interpolation leads to

. r(r- 1) •
fa(rj) = -----2tufa (rj-- 2 8ra) + r(2 -- r)f* ( rj-- 8ra)

-t ( 1 - r)2(2 - r).f.( rj), (B7)

where _r a is defined in Eq. (B3). Accordingly, the phase
factors in the advection operator given by Eq. (B4) become

and

f* _f,_ + O,,(f), (B2)

1

$r`,=7%. (B3)

(1-r)(2-r) r(2--r) r(r-1)
A = 2 + -t (B8a)

P 2p 2 '

(1-r)(2-r) r(r- 1)p 2

B = 2 + r(2- r)p-_ 2 , (B8b)

The advection operator in this case becomes

A= diag(1,A,C,B,D,AC,CB,BD,DA),

where

(B4)

(1-r)(2-r) r(2- r) r(r- 1)
C= 2 -_ -t (B8c)

q 2q 2 '

(1-r)(2-r) r(r- 1)q 2

D= 2 t-r(2-r)q-_ 2 , (B8d)

r(r+ 1)p r(r- 1)
A - -- + ( 1 - r2) + _, (B5a)

2 2p

r(r+ 1 ) r(r- 1 )p
B = l- ( 1 - r2) + --, (B5b)

2p 2

r(r+ 1)q r(r- 1)
C = -- -I-(1 -- r2)--t-_ (B5c)

2 2q

r(r+ 1) r(r- 1)q

D = 2---_ + ( 1 - r") 4 2 (B5d)

where p=e ikx and q=eiky. With the new phase factors, we

find new results at orders 1 and 2 in k. The speed of sound
and the Galilean coefficient are multiplied by r and the vis-
cosity coefficients are multiplied by r 2.

At higher order in k, dispersion effects due to lattice arise,

leading to differences between solutions of the standard
Navier-Stokes equations and the flows computed using the

LBE technique.
As in Eq. (53), we find that the advection coefficient for

shear waves can be made isotropic to second order in k by
choosing

ss=3rZ (2-Ss)
(3r2_ss), (B6)

which improves Eq. (53), since we can choose s s close to 2
while maintaining s 5 reasonably far away from 2 (between 1

and 3/2) by taking r2 close to 2/3.

where p = e ikx and q = eiky.

Again, the third-order term (g I) in k for the shear mode is

anisotropic unless the following relation is satisfied:

s5 = r__ (2- Ss) (B9)
( 3rZ- 3rsg + 2s8) "

For s s and s5 in the usual range (s 8 near 2 and s 5 between 1

and 3/2), the preceding equation leads to a complex value of
r. It should be pointed out that due to the commutativity of

propagation along x and y axes, one could apply different
interpolation formulas along each axis, according to the

physics of flow. For instance, a large stretch of grid can be
applied in the direction along which flow fields do not
change much in space, whereas in the other orthogonal di-

rection, a normal grid (without interpolation) or even a re-
fined grid [45] can be used, so that the aspect ratio of the

meshes is large enough to be appropriate to the flow.

Figure 7 shows the k dependence of the normalized shear
viscosity v(k)/v 0 for the LBE model with and without inter-

polation schemes. Three orientations of k are chosen: 0= 0

(solid line), 7r/8 (dotted line), and rr/4 (dashed line). Figures
7(a), 7(b), and 7(c) show the v(k)/vo for the LBE model

with no interpolation, with second-order central interpolation

scheme and r= 0.5, and with second-order upwind interpo-
lation scheme and r = 0.5, respectively. It should be stressed
that interpolation schemes do create an enormous amount of

numerical viscosity at k= zr/2: Both the central and the up-

wind interpolation schemes increase the shear viscosity at k

= 7r/2 by almost two orders of magnitude, whereas without
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interpolation, the corresponding increase for the LBE

scheme is at most only a factor of about 2.5 (in the direction

0 = _r/8). In all cases, the viscosity displays significant an-

isotropy at k = 7r/2.

Similarly to Fig. 7, Fig. 8 shows the k dependence of the

Galilean-coefficient g(k). The three curves in the middle of

the figure corresponding to the LBE model without interpo-

lation. The lower three curves, g(k)_ < 1, correspond to the

LBE scheme with the central interpolation, and the upper

three curves, g(k)_ > 1, correspond to the LBE scheme with

the upwind interpolation. Again, interpolations have a sig-

nificant effect on Galilean invariance.

One common feature observed in Figs. 7 and 8 is that the

transport coefficients of a model along the direction of 8

=_-/8 is far from those along the directions 0=0 and 0

= 7r/4. This is related to the fact that for the square lattice,

the wave vector k along the direction 0= zr/8 is not a recip-

rocal vector of the underlying lattice.
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ABSTRACT

In solving high Reynolds number flow problems

with geometrical discontinuities using the method of
lattice Boltzmann equation, the following paradox exits.

On the one hand, the density field is required to be
nearly constant for the nearly incompressibility

condition to be satisfied and the pressure near the

geometric discontinuity is linearly proportional to the
local density field. On the other hand, the shear stress

and the pressure are singular near the geometry
singularity, such as sharp corners. This often results in

undesirable, strong local spatial oscillations which
contaminate the solution for the flow field away from

the singular points. The recent work by Lallemand &
Luo [7] suggests that the use of a multi-relaxation-time

model can improve the computational stability and
reduce the undesirable dispersion. However the

difference was considered to be largely of higher order.
In this paper we report detailed comparison and

assessment of the performance of these two LBE
models: single-relaxation-time (SRT) and multi-

relaxation-time (MRT) for various flows with
geometric and flow singularities. Computational results
for the pressure, viscous stresses, vorticity, and flow

velocity in regions of large gradient show that MRT
model significantly reduced the extent of the spatial

oscillation near the geometric singular points and
improved the quality of the flow field at high Reynolds
number. The difference between the solutions of the

two models are on the leading order in such cases.

1. BACKGROUND

The method of lattice Boltzmann equation (LBE)
solves the microscopic kinetic equation for particle

distribution functiony'(x, _:, t), where _ is the particle

* Professor. ** Graduate student t Professor and Chair, Fellow AIAA.

Copyright (a) 2001 by authors. Published by the American institute of

Aeronautics and Astronautics, Inc, with Permission

velocity, in phase space (x, _ and time t, from which

the macroscopic quantities (velocity and density) are

obtained through moment integration of fix, _, t).

Because the solution procedure is explicit, easy to
implement, and parallelize, the LBE method has

increasingly become an attractive alternative

computational method for solving fluid dynamics
problems in various systems [1-4]. The most widely
used lattice Boltzmann model equation is the following

single-relaxation-time LBGK model [5],

f_(x, + e,_6t, t + dt) - f, dxi, t)

= -I[fa(x,,t)-f_eq)(x,,t)] (1)
f

where f_(x, t) and f_'q_(x, t) are the distribution

function and the equilibrium distribution function of

the cc-th discrete velocity _, respectively, r is the

dimensionless relaxation time and e,, is a discrete

velocity vector.

The 9-velocity (or 9-bit) LBE model on the 2-D

square lattice (Fig. 1), denoted as the D2Q9 model, has
been widely used for simulating 2-D flows. For
athermal fluids, the equilibrium distributions is of the

following form [6]

f(eq)=pwa[l+ 4 e_.u +
c

9 ( ea.u)2. 3-----7- u.u] (2)
2c 4 2c"

where w,_ is a weighting factor and e,, is a discrete

velocity, c = dx/dt is the lattice speed, and c?x and dt
are the lattice constant and the time step, respectively.

The discrete velocities for the D2Q9 models are

_(0, 0, 0), ct = 0, rest particle

e a = _(+l,0)c, (0,+ 1, )c, ct = 1,3,5,7 (3)

[ (+l,+l)c, ct = 2,4,6,8.

and the values of the weighting factor w,, are

4/9, or=0

w a = _ 1/9, cr = 1,3,5,7 (4)
/

[1/36, a = 2,4,6,8.
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The density and velocity can be computed as

:'Z:o =Z:': , (5)

u=l Zeaf,_ =l Ze_f(jq) .
Pa Pa

(6)

The speed of sound of the above LBE models is c, =

c� _ and the equation of state is that of an ideal gas

so that

p = (7)
The viscosity of the fluid is

v= (8)
With this choice for the viscosity, Eq. (1) is formally a

second order method for solving incompressible flows

[6]. Physical and computational stability requires that

r> I/2. Equation (1) is usually solved in two steps:

collision step: fa(xi, t + fit)= fa(xi, t)

--l[fa(xi,t)-- f(aeq)(xi, t)] , (9a)
T

streaming step: f_(xj + e_& t + fit) =

fd (x i, t + fit), (9b)

which is known as the LBGK scheme [4,5]. In the
above, * denotes the post-collision values. It is noted

that the collision step is completely local, and the
streaming step is uniform and requires little

computational effort, which makes Eq. (I) ideal for
parallel implementation. The simplicity and compact
nature of the LBGK scheme, however, necessitate the

use of square lattices of constant spacing (& = fly),
and consequently lead to the unity of the local

Courant-Fridrich-Levy (CFL) number, because fit =
fir.

In attempting to obtain solutions for high

Reynolds number flows using the LBE method, we
found that the solution field for (p, u, v) often exhibit

spatial oscillations in regions of large gradient such as
stagnation point and sharp convex comers. Especially

near a sharp convex comer, because the pressure and
the vorticity are singular locally, a large gradient in the

density or pressure field exists. Since there usully is
insufficient resolution near the comer, the large

gradient is often accompanied by spatial oscillations.
Depending on the geometry, such spatial oscillation

can propagate into the flow to contaminate the

macroscopic variables in a large region of interest. The
spatial oscillation may adversely affect the

computational stability and convergence rate.

Recently, Lallemand and Luo [7] performed
detailed analyses on the dispersion, dissipation, and

stability characteristics of a generalized lattice

Boltzmann equation model proposed by d'Humieres
[8]. It was found that by the use of multiple relaxation

times in the generalized lattice Boltzmann equations,

better computational stability can be achieved over the
standard LBGK scheme due to the separation of the
relaxations of the various kinetic modes in the

generalized Iattice Boltzmann equation model--
hereinafter referred as the multi-relaxation-time

(MRT) model. It is also found in Ref. [7] through the

linearized analysis on the MRT model for various
simple flows that the MRT model gives the same

results, to the second order accuracy, as the single-
relaxation-time (SRT) LBGK model does. It seems

that these two models are equivalent in the long
wavelength limit for macroscopic variable of interest

and the difference is a high order effect based on their

linear analysis. Such high order differences, however,

can be hardly detected in simple linear flows.
Many fluid flow problems posses complicated

geometries and mathematical singularities. Since a

singularity often affects numerical solutions in high
wavenumbers, it is expected that the results of the

MRT model be noticeably different from that of the

SRT model, at least locally near the geometric
singularity. For convection-dominated problems, such
local difference in the solution behavior may also lead

to difference in the solutions over a larger scale. It is
important to understand how the solution based on

MRT model behaves in such flows in comparison with
the standard LBGK model.

The present paper reports detailed comparison and

assessment of the performance of these two LBE
models for various flows with geometric and flow
singularities. A brief background on the MRT model

will be described first. Computational results for the

pressure, viscous stresses, vorticity, and flow velocity
in regions of large gradient will be compared between
the MRT and SRT models under otherwise identical

computational and physical parameters for: 1) Stokes
first problem; 2) steady uniform flow over a cascade of

zero-thickness, finite length flat plates; 3) steady
uniform flow over a cascade of finite-thickness, semi-

infinite length plates; 4) and steady lid-driven cavity
flow. The flow in the Stokes first problem is singular

at t=0. The flow in a lid-driven cavity has two singular

comers at the intersection of the moving wall and
stationary walls in which the viscous stresses have
non-integrable singularities. The flows over a plate and

a step have singularities in the pressure and stresses,

but they are weaker than in the lid-driven cavity flow.
These flows with varying degree of singularities allow
for a detailed assessment of the two LBE models. The

computational results clearly demonstrate that the
MRT model has much better behavior in flows

involving large gradients than the SRT LBGK model.
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2. MULTI-RELAXATION MODEL

In Ref. [7],

R__= (p,e,Z, jx,qx,

and R is

F__=(fo,fl,fz,f3

p II 1

e -4 -1

c 4 -2

Jx 0 1

R= qx =1 0 -2

J_ / 0 0

qy ] 0 0

p=[ " 0 1
p_y) 0 0

a new set of

Jr'qY'Pxx'PxY)7" are

related to the

,f4,fs,f6,fT,fg) r as

1 l 1 1 1 1

2 -1 2 -1 2 -1

1 -2 t -2 1 -2

l 0 -1 -1 -1 0

1 0 -1 2 -1 0

1 1 1 0 -1 -1

1 -2 I 0 -1 2

0 -1 0 1 0 -1

1 0 -1 0 1 0

=MF

variables

introduced

set of

follows,

1 :fo"

2 A
i A
1 A
1 A

- A

- A

o A

(lO)

where M is the 9x9 matrix transforming _Fto R. In the

vector _, p is the fluid material density, e is the

energy, c is related to the square of the energy, jx andjy
are the momentum density (or mass flux), qx and qy

correspond to the energy flux, and pxx and pxy
correspond to the diagonal and off-diagonal

component of the viscous stress tensor. One of the
inherent disadvantage of the standard LBGK model is

that everything is relaxed in the same manner as given
by Eq. (9a). In reality, because the mass and
momentum are conserved during the molecular

collision, there should be no relaxation for the

conserved quantities such as mass and momentum.
The MRT model can take this difference into

consideration in the design of the model. In lieu of Eq.

(9a), the collision procedure is carried out as follows,

e" = e- s 2 (e-eeq) , (1 la)

s" = e - s3(c- ceq), (1 lb)

q*_= qx -ss(qx -q_q), (1 lc)

q*y = qy - s 7 (qy - qyq), (11 d)

eqP'_ =Px_ -ss(p=-P_x), (lle)

* eq
Pxy = Pxy - s9 (Pxy - Pxy ) (11 f)

where * denotes the post-collision state and the

equilibrium values were chosen to be

e eq = -2p+3(u z +v2), (12a)

oeeq = p-3(u 2 +vZ), (12b)

q_q = -u, (12c)

eq = (12d)qy -v,

p_ =u 2 -v 2, (12e)

eq (12f)Pxy = uv

Before the streaming step, Eq. (9b), is carried out, one

needs to transform the post-collision values, R', back

to __F by using

F' = M -1 R" (13)

In writing the code, Eq. (13) can be combined with Eq.

(1 I) to obtain a single expression

F' = F- M-IS(R-R ') (14)

where S is the diagonal matrix:

S = diag(O, s2,s3,0,ss,0,s 7 ,ss,s9). (15)

The streaming step in the MRT model is carried out

exactly in the same manner for each component as in
the standard LBGK model based on Eq. (9b)

In Ref. [7], it was shown that for the MRT model

to give the same shear viscosity as given by Eq. (8) for
the SRT model, one needs to set

s8 = Sg= 1/r. (16)
It is much more flexible to chose the rest of the

relaxation parameters: s_ s3, ss, and sT. In general,

these four parameters can be chosen to be slightly
larger than 1. In this study, we set s2 =s3 =s5 =s7 =1.2

for simplicity. Very little difference is observed in the
flow field if a value of 1.1 is used for (s_ ss, ss, sT). It

is worth commenting here that by setting s2 =s3 =s5

=s7 = s8 = s9 = 1/r, the SRT model is recovered.

3. RESULTS AND DISCUSSIONS

To effectively demonstrate the difference between
the solutions obtained from the SRT model and the

MRT model, we compare various macroscopic

variables in regions of large gradient. Four cases are
considered. They are: i) Stokes first problem; ii) steady
uniform flow over a cascade of zero-thickness, finite

length flat plates at Re=1000; iii) steady uniform flow
over a cascade of finite-thickness, semi-infinite length

plates at Re=400 based on the inlet velocity and the
thickness of the plate; and iv) steady lid-driven cavity
flow at Re=1000. In all the simulations, the initial

density is set to be p0=l. The results for the density

(and thus pressure) are presented only in terms of the

deviation from P0 or some upstream reference value.
The results of the SRT model are obtained by running
the same MRT code with s2 =s3 =s5 =s7 = $8 = $9 =

l/r. Obviously, the relative performance between

different LBE models depends on many factors

including the solution characteristics, types of
variables under investigation, and grid resolution. No

exhaustive comparison will be made. Instead, we have
chosen reasonable grid size in all cases to contrast the
behavior of the two models.
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3.1 Stoke first problem

For an infinitely long wall to move impulsively
with a velocity U at t=0 ÷, the exact solution for the

wall shear stress is given by

flU

"_xy,w - _ (17)

where/1 is the dynamics viscosity of the fluid. Fig. 2
shows the relative error of the LBE solutions for the

wall shear stress,
LBE exact

E = rxy,w - rxy, w I (18)
exaclfxy, w I

The results are obtained using the relaxation time

z=l/sg=0.55. Near t=-0, there is not enough spatial

resolution for the stokes layer of the thickness x/_.

Hence as illustrated in Fig. 2 substantial oscillations

are present near t=-0. Clearly, the error in the MRT
model is smaller than the SRT error for t<100 when

the near-wall velocity gradient is large. Eventually, the

effect of singularity diminishes and the two solutions
approach each other.

3.2 Flow over a cascade of zero-thickness,
finite length flat plate

The schematic of the flow is shown in the insert

of Fig. 3a. Symmetry condition is imposed at y= 4- H.
The plate is placed half-way between two gridlines so
that the standard bounce-back condition can be used to

update the wall condition for f,_'s. A zeroth order
extrapolation is used at the downstream exit plane for

fu's. A constant uniform velocity condition is imposed

at the inlet, x/L= -2. The plate length is 40 in lattice

unit (by taking &-=-l). The relaxation time controlling

the shear viscosity is set to be r=0.512 and the

Reynolds number based on the length is Re=ULIv
=1000. The free stream velocity is thus U=0.1 and

H/L=2 so that there 80 lattices from the plate to the
symmetry line.

Fig. 3a compares the density deviation, p-a, as a

function ofy at x/L =0.0125, which is half grid away
from the leading edge, based on the MRT model and
the SRT model under otherwise identical conditions.

Due to the singularity in the flow at the leading edge,
it is inevitable to have large gradients in the pressure,
stresses, and vorticity near the leading edge at high Re.
When there is insufficient numerical resolution, an

unphysical spatial oscillation develops near the leading
edge. However, MRT model is seen to be much more

effective in suppressing the spatial oscillation for p or

p near the leading edge. Fig. 3b compares p-1 as a
function ofy at x/L=0.5125 under the same condition.
Surprisingly, the solution based on the SRT model still

possesses a substantial level of spatial oscillations

even in the middle of the plate for the whole cross-
section while the solution from the MRT model has

become sufficiently smooth. Fig. 3c shows the viscous

normal stress, rxx, normalized by/IU/L, as a function
ofy at x/L = 0.5125. Similar level of oscillations is
observed in the SRT based solution. In this work, the

viscous stresses are obtained using the non-

equilibrium part of the distribution function as,
8

_ (1-_])Z [f_,(x,t)
2r

e_=]

_ f(a_q)(x,t)l(eaiew --2 eal .eafij ). (19)

Hence no finite difference is employed for the
evaluation of the viscous stresses. Fig. 3d compares

the dimensionless viscous shear stress, rxy, as a
function ofy at x/L = 0.5125. Again, the oscillations in
the SRT based solution are noticeable outside the

viscous boundary layer.

To develop a further, quantitative understanding
of the performance of the two models for flow over a
flat plate, the streamwise variation of various

macroscopic quantities near the plate y/L =0.0125,
which is half-grid above the plate, are also examined.

Fig. 4a shows the variation of the pressure coefficient

Cp= P-Poo (20)
po U2 /2 '

aty/L =0.0125 as a function ofx for solutions based on

these two models where p_ is the pressure at the
centerline of the inlet. It is noted that the singularity at

x=0 resulted in oscillation in Cp for about 4-5 grid
points after the leading edge in the MRT model.

However, Cp in the SRT based solution continues to
oscillate across the entire plate. Fig. 4b shows

variation of the viscous normal stress, x=, normalized

by lzU/L, at y/L =0.0125. The superiority of the MRT
model over the SRT model can be clearly observed in

regions before and after the leading edge. Fig. 4c

compares the dimensionless wall vorticity, Ou/Oy,
normalized by U/L, between the two models. Little
oscillation is observed for the MRT based solution
while the SRT based solution continues to show

oscillatory behavior up to x/L =0.4, which cannot be

considered as the local region of the leading edge.

3.3 Flow over a cascade of finite thickness,
semi-finite length plates

The insert in Fig. 5a shows the schematic of the

flow. In this study, H/h=4 is used. Symmetry

conditions are imposed at the symmetry lines at y=+

H/2. There are 40 grids from y=-h/2 to y=h/2 so that

there are a total of 160 lattices between the symmetry

4
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lines.Thefreestreamvelocity,U, is imposed at an

upstream section x/h=-2 or 80 to the left of the plate.
The downstream exit location is at x/h=8 and a zeroth

order extrapolation is employed. The Reynolds

number, Re=hUI v (= 400 in this study) is based on the

inlet velocity U and the thickness of the plate h. The
solid walls of the plate are all located half-way

between the grids so that the bounce-back condition is

used to handle the no-slip condition at the solid walls.

We used a relaxation time r =0.506 that is very close
to 0.5 in this case. There are 40 lattices (h=40) across

the thickness of the plate; this corresponds to U=0.02
for Re=400.

Fig. 5a shows the streamwise variation of the x-
component velocity at y/h=0.5125. For x>0, this

corresponds to half a grid above the plate. Away from
the convex comer, the approaching flow slows down

along y/L=0.5125 due to the blockage by the plate.
Very close to the comer, the fluid element feels the

turning of the flow direction. According to the
classical potential flow description, the flow
accelerates around such a convex comer. After the

comer (x=0), the no-slip condition causes the near-
wall flow to slow down immediately. Thus a sharp

drop in the velocity is observed. After a short distance

the flow separates to form a slender bubble. While the
MRT based solution is reasonably smooth, the SRT

based solution exhibits significant oscillations before
and after the comer for Ixl/h<0.2.

Fig. 5b shows the variation of the pressure

coefficient Cp at y/L=0.5125. The spatial oscillation in
the MRT based solution is rather local and is of small

amplitude. The gradual increase of the pressure after
the comer reflects the influence of the separation

bubble. Further downstream, the pressure starts to

decrease linearly as one would expect for a channel
flow. The oscillation in the SRT based solution exists

for _xl/h -1 and it shows clearly that the influence of

the comer singularity is not local in the SRT based
solution.

Fig. 5c compares the variation of the
dimensionless shear stress at y/h=0.5125. While the
MRT based solution shows no sign of oscillation in

the upstream region of the comer, the SRT based
solution shows a rather strong oscillation in the
viscous shear stress all the way up to x/h --0.6. Right
after the comer, the shear stress drops sharply due the

geometric singularity. The insufficient resolution for
the comer singularity resulted in oscillatory behavior
in the shear stress downstream of the comer in the

SRT based solution. However, the MRT based

solution again shows very little oscillation after the

comer. Fig. 5d compares the wall vorticity between
the two models right after the comer. No oscillation is
observed in the MRT model, but the SRT model

shows visible oscillation up to x/h=0.5.

3.4 Lid-driven cavity flow

The insect in Fig. 6a shows the coordinate system
for the flow inside the cavity. The first line of the grid

in the fluid region is at a distance A& from the wall.

In this study, ,4=0.3 is used. The boundary condition

for A¢0.5 is based on that given in Ref. [9] for curved

geometries. The height of the cavity is H/fir=-64+2A.
With r =0.52 and Re=1000, the velocity of the moving
wall needs to be U=0.1032.

The velocity field is discontinuous at the two
comers on the moving wall. Thus the flow singularity

is stronger than in the previous two cases where the

velocity is continuous near the convex comer. Fig. 6a
compares the x-component velocity as a function ofy
at x/H=O.O0464 which is on the first grid away from
the left vertical wall. Oscillations are observed in both

SRT based and MRT based velocity profiles due to

insufficient resolution for the singularity. However,
the oscillation in the MRT solution has smaller

amplitude and is limited to a region of 5-6 girds. The
oscillation in the SRT solution has larger amplitude

and propagates further into the flow field. Fig. 6b
shows the vertical component of the velocity as a

function of y at x/H = 0.00464. Again, the SRT
solution has a much larger amplitude and larger region
of the oscillation. Fig. 6c compares the velocity

profiles of the x-component of the two solutions at the
centerline (x/H=0.5) in the lower half of the cavity
with a finite difference solution based on the vorticity-

stream-function formulation. It is worth noting that the
MRT based solution is noticeably more accurate than

the SRT based solution even in regions where one

considers far away from the singularities.
As a final comment, by taking advantage of many

zero elements in M-iS and recognizing various

common factors in the expressions for the vector

M -1S.(_R-_R'), the algorithm for the collision step in

the MRT model can be coded quite efficiently. For the

entire computation of the collision, streaming, and the
evaluation of macroscopic variables, the code for the
MRT model takes only about 10% more CPU time per

time step than an SRT code does. However, this extra

10% work is greatly compensated by the improved
convergence of the MRT model in suppressing

efficiently the transient oscillation associated with the

high-frequency pressure (acoustic) waves, the much
improved quality of the results, and the reduced

demand for higher resolution.

4. CONCLUSIONS

Based on the detailed examination of the flow

fields in various cases, it is clear that the MRT model
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hassubstantialadvantagesoverthe SRTmodelin
handlingthegeometricsingularities.Whilethelinear
analysisgivenin Ref.[7] showsthatthedifference
betweentheSRTmodelandMRTmodelmainlylies
in thehigherordertermor forthehighwavenumber
components,the presentsimulationsin more
complicatedflowsdemonstratethatthe difference
betweenthe two modelscanbe non-local.The
differenceissubstantiallylargerthanjusthigherorder.
The MRT modelin generalprovidessmoother
variationsofthemacroscopicquantitiesandhasmuch
smallerregionsof theoscillationneara singularity.
Sincethespatialoscillationiso1%naccompaniedby
the high frequencypressure(acoustic)wavesin
transientsimulations,theMRTmodelalsooffersa
betterconvergencetowardsteadystateaswell.The
MRT model is strongly recommended.The
quantitativecomparisonswillobviouslydependonthe
gridresolution,andtheagreementbetweenthetwo
modelsis expectedto be improvedasthegrid is
refined.Howeverthe presentstudyhasclearly
establisheddifferences,inactualcomputationalterms,
betweenthesingle-andmulti-relaxationtimemodels.
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ABSTRACT

A finite difference-based lattice Boltzmann model, employing the 2-D, 9-speed

square (D2Q9) lattice for the compressible Euler equations, is presented. The

model is constructed by allowing the particles to possess both kinetic and thermal

energies. Such a lattice structure can represent both incompressible and

compressible flow regimes. In the numerical treatment, to attain desirable

accuracy, the total-variation-diminishing (TVD) scheme is adopted with either the

minmod function or a second-order corrector as the flux limiter. The model can

treat shock/expansion waves as well as contact discontinuity. Both one- and two-

dimensional test cases are computed, and the results are compared with the exact

as well as other reported numerical solutions, demonstrating that there is

consistency between macroscopic and kinetic computations for the compressible

flow.



1.INTRODUCTION

ThelatticeGasAutomata(LGA) modelwasoriginallypresentedby Frisch,

HasslacherandPomeau[1] asanalternativeto traditionalmethodsfor simulating

theNavier-Stokesequation.TheclassicalLGA employsasetof Booleanvariables

to representtheparticledistribution.Thedevelopmentof LGA wasobstructedby

two fundamentaldifficulties: thedependenceof convectionon densityandthe

dependenceof pressureonvelocity.Furthermore,thisandsimilar modelssuffer

from statisticalnoiseandnon-Galileaninvariance.The latticeBoltzmannMethods

(LBM) developedbyQian [2], and He and Luo [3] overcome these difficulties. In

LBM, real numbers are used to represent the ensemble-averaged particle

distribution function. LBM has attracted much attention as a novel method for

simulation fluid flows, including viscous flows, multiphase fluids, magneto-

hydrodynamics, reaction-diffusion systems, and flows through porous media [4].

In the LBM model, the velocity space is discretized into a finite number of

discrete values, and most models are constrained to zero Mach number flows. In

this work, we focus on the LBM simulation of inviscid compressible flows with

discontinuities. Recently, several authors have presented LBM models for

compressible flows based on different approaches. For example, Hu [5] proposed a

LBM model based on the hexagonal lattice. In this model, the particles possess one

of the three energy levels, with a total of 13-bit in the model. Note that for the

incompressible flow, only 7-bit are required with the same lattice structure. Similar

to Hu's model, Yah [6] presented a 17-bit model with three energy levels and three

2



speedsona squarelattice.Sun [7,8] formulatedanadaptiveLBM modelin which

aparticlepossessestwo differentkindsof velocity,oneis themigrating velocity,

relating to the transport (or displacement) of a particle, and the other is the phase

velocity, related to the momentum of a particle. Palmer [9], on the other hand,

developed a lattice Boltzmann algorithm by modeling another scalar field

distribution for internal energy. Suffice it to say that by creating an enlarged lattice

structure, the thermal energy and the compressibility effect,can be treated.

However, such an approach results in a more complicated model with a large

number of bits, meaning that the number of equations and the computing time will

increase.

In this paper, based on the 2-D, 9-velocity square lattice (D2Q9) model, we

propose an LBM model for simulating compressible flows. We do not increase the

velocity set in each lattice, but instead revise the energy definition of particles,

assuming that besides kinetic energy, the particles also possess thermal energy.

The specific heat ratio 7 can be chosen freely, and the inlernal energy of gas can

vary in a wide range, so the present model can be used to simulate varying Mach

number flows. To improve stability and accuracy, we employ the finite difference-

based LBM, previously reported in Mei and Shyy [10], to evolve the particle

distribution function. In section 2, we formulate a finite difference-based LBM

model, including derivation to ascertain the equilibrium distribution function. The

Euler equations are recovered from the present LBM to the first order in time.

Section 3 is about the computational procedure. Section 4 presents three numerical

tests of one dimensional flow, and the results are compared with the exact

3



solutionsandnumericalresultsbasedonotherschemes.A two-dimensional

numericaltestof pressurepulsepropagationis alsopresented.

2. CONSTRUCTION OF THE LATTICE BOLTZMANN MODEL

As illustrated in Fig. 1, the model presented in this paper is based on the D2Q9

lattice. We redefine the energy levels eA, eB and e.c, respectively, for the rest

particles and two kinds of particles with different speed. The particle distribution

function at node r and time t is represented byfa(r,t). We define the mass,

momentum and total energy at each node as

p=Zf _ (i)

pu,. = _._f,,e_ (2)

1 2_,ou 2 +pE=>--'( lea +e=)f_ (3)

where i=1, 2 for 2 dimension, c_=0 .... ,8; ea is the velocity vector of particles(see

Fig.l). E is the internal energy of per unit mass.

ea=c(cos(_z-1)ev'4,sin(oc-1)rd4) for cry-l, 3, 5, 7

ea= 4_-c(cos(c_-l)r'd4,sin(tz-1)rd4) for o,=2, 4, 6, 8,

and e0=0.

where c is the speed parameter. We will use the following velocity moment

tensors[ 11] to aid the derivation of the LBM.

Z eo_e_ = 2CZdij
tz=1,3,5,7

'>--'e,_ e_ = 4c260 (4)
tz=2,4,6,8
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y'e_e_e_e_ = 2c48o t
cr=1,3,5,7 4 4 ,

_'e_eee_e_ = c Aij_ -8c 60_
cc=2,4,6,8

(5)

where 8ijkm=l, if i=j=k=m, otherwise _iijkrn=0, Aijkm=(_ijSkm + 8ik_jm'+" 8im _jk)

and all the odd order moment tensors equal zero. Furthermore,the particles belong

to one of three energy levels. Ec_=ea for a=0; e_=eB for c_=1,3,5,7; ec,=ec for

ct,---2,4,6,8.

The evolution of the distribution function can be written as the BGK-type

Lattice Boltzmann equation [2,3].

Of,, Of,, 1
--+ec_ - (f,(r,t)- ff_q(r,t)) (6)
0t 0x i z'At

(c_---0,1 .... ,8)where "ris the single-relaxation time, f_q is the local equilibrium

distribution chosen to satisfy the macroscopic gas dynamic equation. The right-

hand side of Eq.(6) represents the simplified collision operator representing the

changes of fdue to collisions of particles. Eq.(6), after being multiplied by 1, ec,

and ec_2/2+ea respectively, summed up for all c_=0,...,8, in addition to considering

Eq. (1) to Eq. (3), yields

ap a/x,i
- 0 (7)

Ot Oxi

OPui t-_O--_-(_"e,,e,_f,,)=O (8)
Ot oxj a

1 a 1 ,

_-(_pu 2 + PE) + _x, [(_e; + e,)e_L] = 0 (9)

In order to recover the gas dynamic equation, besides the conservation of mass,

momentum and energy,



_f_ = p
O[

= pu,

(10)

(11)

(12)

the equilibrium distribution function must satisfy the following momentum and

energy flux conditions [5].

eq p6 °Zf2 e_e_ = Puiu j +

1 1_ 1 PU2
_-'f_q(-_leo, +e,_)e,_ =(5 +pE+p)u,

(13)

(14)

The pressure p can be obtained from the equations of state and energy of

prefect gas.

p = (y - 1)pE

where y is the ratio of specific heat of gas.

We assume that f,_q has the same functional expression as that in the

incompressible D2Q9 LBM [2,3]

feq = DOp + D3 pU 2

ff, q = Ao,O + Alpuie,_ + A2,ouiu jeo_eaj + A3P/A 2

fro = Bop + Bl,t)uie,_ + Bzpuiuje,_e, _ + B3Pu 2

°--°ta" = 1,3,5,7

cr = 2,4,6,8j

Substituting Eq.(16) into Eqs.(10)-(14), we obtain ten linear algebraic equations

for determining the coefficients Ai, Bi, Di. Considering Eq. (4), (5), and note that

Eq. (10)-(14) are equations of power of 9 and u, so all terms to each order of

9 can be collected.

Specifically, form Eq. (10) we have

(15)

(16)



4Ao +4Bo+ D o = 1

2c2A2 +4c2B2 +4A 3 +4B 3 + D 3 =0

(17)

(18)

From Eq. (11) we have

2c2A_ + 4c_B1 = 1 (19)

From Eq. (12) we have

1

c4A2 + 2cZcsA2 + 2c2A3 + 4cBA 3 + 4c2Bz + 4CZecBz + 4c2B3 + 4CcB 3 + CAD 3 ='_

2c2Ao +4eBA o +4c2Bo +4CcBo +eaD o = E (21)

(20)

From Eq. (13) and consider Eq. (15) we have

8c4B2 = 1

2c4A_ - 8c492 = 0

2cZ A3 +4c4B2 +4c2B3 = 0

2cZ Ao + 4cZ Bo = (y-1)E

(22)

(23)

(24)

(25)

From Eq. (14) and consider Eq. (15) we have

(c 4 + 2cZ_.B)Ai +(4c 4 +4C.Ec)B _ 1 uZ=-- +yE
2

To determine these coefficients from Eq.(17), (21) and (25) we have

E[2 - 2/ - (y - 1)(-2_ 26'A
B o = " c 2 )] - _c"A

4(ec - 2ee + _A )

E
A o = -2B o + (y - 1)--

2c 2

D o =l-(4A o +4B o)

From Eqs.(19) and (26) we have

(26)

(27)

(28)

(29)
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B I

+ re !c 2_ _ E'I_
2 2

2c2(c 2 + 2,_ c - 2e B)

1
A I =-2B I +

2c 2

1
B 2 =--

8c 4

1
A 2 =_

2c 4

From Eqs.(18) and (24) we have

(30)

(31)

(32)

(33)

E A -- E C

B3 = 8ca (_'c - 2eB + eA )

1

A 3 =-2B 3 4c 2

3
D 3 = 4A 3 - 4B 3

- 2c 2

(34)

(35)

(36)

Here we note that if the energy levels ea, eB, eC and c are chosen to be constants,

then A2, B2, A3, B3, D3 are constants also. However, Ao, B0, Do, AI, B1 are functions

of macroscopic variables E and u.

Choosing time step At as the small perturbation parameter e, we use the

multiscale technique and Chapman-Enskog expansion

c_ a a e2 o3- +e--+ --+... (37)
at at 0 at 1 at 2

f_ = f,_0 + ef2') + e2 f¢2, + ... (38)

The macroscopic dynamic equations of mass, momentum and energy can be

derived from Eqs. (6)-(15)



Op Opu i
+ - R_ + O(e 2) (39)

Ot 0x;

Opu i O(puiuj + p6 o)
-- + = R 2 + O(c 2) (40)

i)t Ox j

0 1 , qo .1

-_ (_ pu " + joE) + -_x (-_ ,ou °u i + p E u i + p u , ) = R 3 + O (e 2 ) (41)

where

R 1 = 0 (42)

R2 (pu,uj+ a - eo
Oxj Oto +_xk (_'_'_f_ e_e_e°_ )] (43)

0 /) 1 O _ eq 1 12
R3 =er0-_j[Tt0 (_pu2uj +pEuj +puj)+--(_f2 (-le_ +e.)e,_%)] (44)/)x k ,_ 2

In summary, with the present lattice Boltzmann formulation, the macroscopic

Euler equations are recovered to the first-order in time.

3. COMPUTATIONAL PROCEDURES

In the BGK model, the evolution equation of particle distribution function is often

cast in the form of

f_(x + %At,t + At) - f_(x,t) = -l (f_(x,t) - f_q(x,t)) (45)
72

Eq.(45) recovers the NS equations in the nearly incompressible flow limit. The

most frequently adopted BGK model, with At=l, separates the evolution process

into two steps: collision and streaming. The resulting scheme is based on the first-

order upwind scheme, and contains substantial numerical viscosity. For

incompressible, viscous flow computations, the numerical viscosity is subtracted

from the prescribed viscosity to convert the scheme to the second-order center



differenceone.Without physicalviscosity,thesmearingeffectof thefirst-order

upwindtreatmentis retainedbecausethecentraldifferencescheme,alongwith the

explicitEuler timestepping,is intrinsicallyunstablewhentheviscouseffect

diminishes.To improvethesolutionaccuracy,modemconceptbasedon thetotal

variationdiminishing(TVD) canbe incorporated,aswill bepresentedbelow.

In thepresentLBM, therearesevenparameters,c, EA,EB,eC't, AX, and At. The

ratio of specific heats y can also be chosen according to Eq. (15), which, in turn,

directly affects the lattice model. If we let EA=eB=_C=0 see Eq. (12), then our

model becomes the incompressible LBM model. It is noted that c must be greater

than the maximum speed of the fluid flow; otherwise it can cause a negative

distribution function.

In the following, we first present the finite difference schemes of Eq.(6), based

on alternative methods to treat the flux terms. There are also different strategies for

handling the collision term, as will be presented after the convection scheme.

(i) LBMI: The minmod method

Utilizing the well known mhmzod scheme[12]the discretized form of convection

term of Eq.(6) can be written as

af,, _ _

e,_ Oxi - 3x, F,,

=_1"_ [F'(I + 12' J)-F'_(I-I'J)]+--_-[F'_(I'J+12 y _)_ Fc,(I, J _ 1)] (46)

where F a = e_fa, Fa (I + 1 j) and F,_ (I, J 1
-_, + 7) is the flux of
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fc_ at the boundaries of each cell. For the advection velocity eax>0, we interpolate

the flux Fa to the boundaries of each cell, using the minmod limiter to estimate the

fluxes [12]:

1F,_(I + , J) = F_ (I, J) + - rain mod[Ab.c_F,_ (I, J), A_ F,_ (I, J)]
2

(47)

ct_---1,2,8,

where Ama_F,_(I,J ) = Fa(l +l,J)- Fa(l,J),

AbacaF a (I, J) = F a (I, J) - F,_ (I - 1, J), and for the advection velocity eax<0, we

interpolate the flux Fa as

1 1

F,_ (I - _-, J) = F,_ (I, J) - -- min mod[Ab.cz _F_ (I. J), A _,,axF,_(I, J)]2
(48)

c_-4,5,6

Using the same interpolation along the y direction we have

1 1

F,_(I,J +-_) = F,_(I.J)+--minmod[Ab.ckyF,_(I,J),Amdyt_(I,J)]2
(49)

cz=2,3,4

1 1

Fa(I, J --_) = Fa(I,J ) - --minmod[Abac_Fa(I,J).A_dy F,_(I,j)]2

ct_-6,7,8,

where A_dyF_(I,J ) = F,_(I,J +1) - Fa(I,J),

Ab,,ckyF,_(I,J) = Fa(I,J) - Fa(l,J -1).

(50)
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(ii) LBM2: Harten 's second-order flux-correction scheme

Instead of the minmod scheme, we have also implemented a second-order flux-

correction scheme proposed by Harten [ 12]. Specifically, Harten suggested the

following flux correction:

F_(i,j)=%L(i,j)+ (l+a,'O_(i,j))[% I(1-_lc_ I)×

x min mod[f_ (i + 1, j) - f_ (i, j), f_ (i, j) - f_ (i - 1, j)] (51)

where o__0 is a user-adjustable parameter and

]f_(i+l,j)-2f=(i,j)+ f.(i-l,j)l
O_(i, j) = (52)

[f_ (i + 1,j) - f_(i,j) l+lf_(i,j)- f_(i- 1,j) [

is a shock switch. We interpolate the flux F_ to the boundaries of each cell:

1 1
F_(i+_,j) = -_[F_ (i + 1,j) + Fo_(i,j) -

IF_(i+l,j)-F_(i,j)[

[ f_(i + l,j)- f_(i,j)]
(f,_(i+l,j)- f,,(i,j))] (53)

Similar to the correction of flux along x-direction, we have flux correction of y-

direction.

AtF_y(i,j):c_f_(i,j)+ (l+wO_(i,j))lco_ I(1-_--y-ylC_ [)x

x min mod[f_ (i, j + 1) - f_ (i, j), f_ (i, j) - f_ (i, j - 1)] (54)

where

[ f_ (i, j + 1) - 2f=(i,j)+ f_(i, j- 1) ]

O_(i,j) =]f=(i,j +l)- f=(i,j)l+] f_(i,j)- f_(i,j-1)[
(55)

and interpolate the flux Fay to the boundaries of each cell:

,1F_(i,j+-_)= [F_(i,j+l)+F_,(i,j)
IF_y(i, j + l)- F_y(i, j)[

If_(i,j+l)- f_(i,j)[
(f_ (i, j + 1) - f,, (i, j))] (56)
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As to the treatment of the source term, similar to the approach of Mei and

Shyy [10] the left-hand-side in Eq. (6) can be treated by a 3-level second-order

scheme

_l(f_ _ f_q)i.+, = _1[f2+ _ _ (2f2_.. _ f[o..-_)]
"g" T

(57)

The extrapolation for f_o ensures that the relaxation term is at the (n+l)st time

step. Finally, the discretized from of Eq.(6) can be expressed as

" 1 2 1 ___ 1
f,_+l_f_ +--[F,,(I+ ,J)-F_(I- ,J)]+ [F_(I,j+I)-F_(I,J- )]

At At y -2

= _l[f2+, _ (2f2q,. _ f2q,n-l)]

g
(58)

4. RESULTS AND DISCUSSIONS

In this section, three well-known one dimensional test problems are calculated. A

system of 200x6 lattices has been used in the one-dimensional test, and a two -

dimensional problem is also presented.

L l-D: Sod Test

The initial condition is

-0.5<x<0

O<x<0.5

The numerical results using LBM minmod method and LBM Harten scheme

are compared with the exact solution (Fig.2 and Fig.3). The solution contains the
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formationof ashockwaveandacontactdiscontinuity.As expected,Harten's

secondorderflux-correctionschemecanresolvethediscontinuitywith fewer

pointswhileexhibitingsomeoscillationsin thecontactdiscontinuityregion.The

widthof thesharpgradientsin theLBM solutionsarecomparedto thoseobtained

by numericalmethods.For thedetailedinformationof themacroscopicsolution,

seee.g, Ref[13]. To evaluate the performance quantitatively, Table 1 lists the L1

norm error in velocity, pressure and density fields of the two tests flows, along

with that of the macroscopic method utilizing the Roe scheme. Figure 4 illustrates

the Ll norm error versus the lattice density. As expected, the first-order accuracy is

attained for flows with discontinuities. The present LBM solutions are very

competitive in comparison with other well-known approaches based on the

macroscopic formulation.

II. l-D: Lax Test

The initial condition is

(Pb ub pD=(0.445,0.698,3.528) -0.5<x<0

(.,OR,uR, pR)=( 0.5,0.0,0.571) 0<x<0.5

Using LBM minmod method, Fig.5 shows the density, pressure, velocity and

internal energy profiles of both LBM and exact solutions. Again, the results are

reasonable, with noticeable variations in velocity and pressure profiles in the

contact discontinuity region. Figure 6 shows the comparison with the LBM flux-

correction solutions; sharper solution profiles are observed. However, there are

also more pressure variations around the contact discontinuity.

14



IlL I-D: Roe Test

The Roe test with the following initial condition:

(,oL, UL, pL)=(1,-1,1.8) -0.5<X<0

(,OR, UR, pR)=(1,1,1.8) 0<X<0.5

The numerical results and exact solutions of LBM minmod method are shown

in Fig.7. Similar to other macroscopic schemes, the LBM results exist error in the

middle of the density and energy profiles. Again, as demonstrated in Fig. 8, the

LBM flux-correction method produces solutions of similar shapes but with sharper

gradients. As well known in the macroscopic-based method, the numerical

solutions exhibit a bump in energy and density profiles.

IV. 2-D: Propagation of a Circular Pressure Pulse

The computational domain [0,I]×[0,1] is divided into 100xl00 square lattices with

Ax=Ay=0.01 and time step At=0.0001. The initial conditions for pressure and

velocities are 9=1, u=v=O everywhere, with a circular pressure pulse assigned at

the center (0.5, 0.5):

p= 1+0.5×sech(z), where z=50× a/(xi,j - X5o.5o) 2 + (Yi,j - Y5o.5o) 2

The evolution of pressure at the center point (0.5, 0.5), with time is compared

between the present LBM and an implicit Lagrangian method, as shown in

Fig. 9. Good agreement is observed. The figure depicts that the pressure at the

center drops rapidly below 1 and then recovers gradually. Fig. 10 shows the

density, u-velocity and pressure of the solution based on the minmod method at
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t=0.2, in half of the domain. Fig. 11 shows the corresponding solutions based on

Harten's second-order flux-correction scheme. These results agree with each other,

as well as those of Ref.14].

5. CONCLUDING REMARI_S

In our computations, we find that the numerical accuracy and stability are not

sensitive to 'r. But the value c, Eg, EB and ec must be chosen carefully, to ensure the

numerical stability. We also employ the second order upwind difference scheme

for discretizing the convection term of Eq.(6),but the numerical result exists strong

oscillation near the discontinuities.

Here we chose eg <0 to ensure that p and E satisfy the state equation Eq.(15) to

ensure physical realizability. Comparing with the macroscopic gas dynamic

equation, Eq.(6) is easer, the convection term is the linear function offa. On the

other hand, the choice of the parameters in the compressible lattice Boltzmann

model needs more investigation. As indicated in the model derivation and the case

studies, there is a lack of a clear guidance to select the most appropriate

combinations. Nevertheless, the parameters chosen here do support the numerical

computation to maintain physical realizability.

The theoretical derivation of the lattice Boltzmann equations and the

prescription of the corresponding lattice structure offer a framework to develop

numerical techniques for flow simulations. Solution accuracy and computational

efficiency are determined by the specific schemes adopted to solve the equation.

The present model can simulate flows over a wide range of Mach numbers and the

16



shocksarewell captured.Althoughthemodelis basedonsquarelatticefor 2-D, it

canbeeasilyappliedto hexagonallatticeand3-D cubiclattices,aswell as

employedoncurvilinearcoordinatesandnon-uniformgrids.As alreadypointed

out in Section1,in comparisonto otherlatticemodelsproposedfor compressible

flow simulations,thepresentlatticestructure,by allowingtheparticlesto possess

bothkineticandthermalenergies,is simplerin numberof discreteenergylevels.

Furthermore,in contrastto theincompressibleflow model,thepresentnumerical

schemebenefitsmorefrom moresophisticateddiscretizationschemes,suchas

thosebasedon theTVD concept,whichcanreducethenumericalviscosityat the

expenseof addedcomputingcost.

As is well statedin the literature,LBM, beingsimple in structure,utilizing

only linearoperators,andobviouslyparallelizable,is anattractiveapproachfor gas

dynamicsproblems.
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Table 1

Sod test and Lax test numerical L1 norm errors. FDLBM compared with the Roe

schemes come from Ref.[ 13]

Sod's test t=0.1644 Lax's test t=0.16

Density Velocity Pressure Density Velocity Pressure

LBMl(minmod) 0.00859 0.02752 0.00855 0.03051 0.01228 0.00762

LBM2(flux-correction)0.00617 0.02165 0.00630 0.02241 0.00963 0.00584

ROE 0.00836 0.01145 0.00666 0.02827 0.02192 0.02655

Here LBM1 is based on the minmod method to interpolate the convection term of

Eq. (6), and LBM2 is based on Harten's second-order flux-correction scheme.

Total of 200 lattices in space are employed.
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Fig. 1. A square lattice 9-velocity model- D209
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